WEBVTT

- 1 00:00:00.180 --> 00:00:02.030 <v ->My pleasure to present our next speaker,</v>
- $2\ 00:00:02.030 \longrightarrow 00:00:05.340$ Dr. Ranjit Bindra, who is an Associate Professor
- $3\ 00:00:05.340$ --> 00:00:09.910 of The rapeutic Radiology here at Yale School of Medicine.
- $4~00:00:09.910 \dashrightarrow 00:00:12.310$ Dr. Bindra is a graduate of Yale School of Medicine,
- $5\ 00:00:12.310 \longrightarrow 00:00:14.340$ so we are very proud of that.
- $6~00{:}00{:}14.340 \dashrightarrow 00{:}00{:}18.720$ And he received his MD and PhD in this program.
- 7 00:00:18.720 --> 00:00:21.100 And he has also completed his residency
- 8 00:00:21.100 --> 00:00:24.690 in Radiation Oncology at Sloan-Kettering Cancer Center.
- 9 00:00:24.690 --> 00:00:27.700 Since then he has come back home and has been
- $10\,00:00:27.700 --> 00:00:30.990$ an extremely successful and accomplished physician scientist
- $11\ 00:00:30.990 \dashrightarrow 00:00:33.380$ with many discoveries that are now finding their way
- 12 00:00:33.380 --> 00:00:34.880 to clinic.
- $13\ 00:00:34.880 \longrightarrow 00:00:37.150$ Today, he is going to talk to us
- $14\ 00:00:37.150 --> 00:00:41.670$ about how he's exploiting some metabolic vulnerabilities
- $15\ 00:00:41.670 --> 00:00:46.260$ in glimoas that have a BMP1D mutation.
- $16\ 00:00:46.260 \longrightarrow 00:00:47.480$ I give you Dr. Bindra.
- 17 00:00:47.480 --> 00:00:48.591 Thank you very much.
- 18 00:00:48.591 --> 00:00:50.841 (applause)
- 19 00:01:04.030 --> 00:01:04.863 <v ->Okay, great.</v>
- 20 00:01:04.863 --> 00:01:06.950 Thanks a lot for having me today.
- 21 00:01:06.950 --> 00:01:09.230 I want to tell you about a really interesting
- $22\ 00{:}01{:}09.230 \to 00{:}01{:}12.710$ recent story from our group looking at DIPG mutation
- $23\ 00:01:12.710 \longrightarrow 00:01:15.700$ and its effect actually on any de-metabolism.

- $24\ 00:01:15.700 \longrightarrow 00:01:18.310$ These are my disclosures which are not relevant today.
- 25 00:01:18.310 --> 00:01:20.050 We'll start off just with one slide
- 26 00:01:20.050 --> 00:01:21.810 really on sort of our approach to
- $27\ 00:01:21.810 --> 00:01:25.280$ novel the rapeutics development here at the cancer center.
- 28 00:01:25.280 --> 00:01:26.700 We'll then move on to the story
- 29~00:01:26.700 --> 00:01:29.667 of a DIBG-associated mutation in this gene called PPM1D
- $30~00:01:29.667 \longrightarrow 00:01:32.570$ and how it actually affects a NAD metabolism
- $31\ 00:01:32.570 \longrightarrow 00:01:35.500$ and leads to a clinically actionable target.
- $32\ 00:01:35.500 --> 00:01:37.460$ Then if time permits, we'll cover a little bit
- $33~00{:}01{:}37.460 \longrightarrow 00{:}01{:}39.260$ about how we're trying to translate this
- $34\ 00:01:39.260 \longrightarrow 00:01:42.660$ directly into the clinic like we've done before.
- $35\ 00:01:42.660 \longrightarrow 00:01:43.570$ So, just getting started.
- $36\ 00:01:43.570 --> 00:01:46.061$ We are very interested in bench to bedside
- 37 00:01:46.061 --> 00:01:48.850 discoveries and studies in our laboratory.
- $38\ 00{:}01{:}48.850 \dashrightarrow 00{:}01{:}51.380$ And a lot of it starts with looking at the land-scape
- $39\ 00:01:51.380 \longrightarrow 00:01:52.910$ of tumor-associated mutations
- $40\ 00:01:52.910 \longrightarrow 00:01:55.480$ like the ones that are shown here.
- $41\ 00:01:55.480 \longrightarrow 00:01:56.800$ We like to look at those mutations
- $42\ 00:01:56.800 --> 00:01:59.690$ and figure out rapid and effective ways to model them.
- $43\ 00:01:59.690 \longrightarrow 00:02:01.970$ so often we'll use Cripsr Cast,
- 44 00:02:01.970 --> 00:02:03.280 but often we'll just use things like
- $45~00{:}02{:}03.280 \dashrightarrow 00{:}02{:}05.060$ simple open reading frame expression
- $46\ 00{:}02{:}05.060 {\:{\circ}{\circ}{\circ}}>00{:}02{:}07.430$ just so we can get isogenic modeling of each one
- $47\ 00:02:07.430 \longrightarrow 00:02:08.940$ of these mutations.
- $48\ 00:02:08.940 \longrightarrow 00:02:10.800$ We then move those model cell lines
- $49\ 00:02:10.800 \longrightarrow 00:02:12.300$ into synthetic lethal screens.

- 50~00:02:12.300 --> 00:02:15.500 Often we'll combine them with DNA damaging agents as well.
- 51~00:02:15.500 --> 00:02:18.090 One of the unique things that we're very, very interested in
- 52 00:02:18.090 --> 00:02:20.860 is trying to find the sort of Achilles Heels.
- $53~00{:}02{:}20.860 \to 00{:}02{:}23.520$ So trying to find driver mutations that may induce defects
- $54~00:02:23.520 \longrightarrow 00:02:26.322$ that we can then exploit for the rapeutic gain.
- 55 00:02:26.322 --> 00:02:29.140 We then move towards more patient-derived,
- 56~00:02:29.140 --> 00:02:31.556 more relevant cell line models to validate the effects
- $57\ 00:02:31.556 \longrightarrow 00:02:34.250$ from our screens and our isogenic cell lines.
- $58\ 00:02:34.250 \longrightarrow 00:02:36.050$ And of course we have to move this
- 59 00:02:36.050 --> 00:02:38.480 into flank and in vivo type modeling
- $60\ 00:02:38.480 \longrightarrow 00:02:40.300$ before we can actually move this into clinic.
- 61 00:02:40.300 --> 00:02:41.690 And finally, as I've mentioned earlier,
- $62\ 00:02:41.690 --> 00:02:44.030$ we're very interested in trying to drive our discoveries
- $63\ 00:02:44.030 \longrightarrow 00:02:45.480$ as quickly as possible,
- 64 00:02:45.480 --> 00:02:47.890 namely into Phase 1 and Phase 2 trials.
- 65 00:02:47.890 --> 00:02:50.220 Brain tumors being the bulk of our work,
- $66\ 00:02:50.220 --> 00:02:51.880$ often we have drug delivery problems,
- $67\ 00:02:51.880 \longrightarrow 00:02:54.430$ and so often we'll look to folks
- $68~00:02:54.430 \dashrightarrow 00:02:57.580$ like the Saltzman Laboratory to explore alternate methods
- $69\ 00:02:57.580 \longrightarrow 00:02:59.680$ to deliver some of these drugs into the brain.
- $70\ 00:02:59.680 --> 00:03:02.184$ And we've been working for quite some time
- $71~00:03:02.184 \longrightarrow 00:03:03.780$ with Mark's group on nano-particle versions
- $72\ 00:03:03.780 \longrightarrow 00:03:05.960$ of some of the drugs that we're studying.
- 73 00:03:05.960 --> 00:03:07.070 So with that sort of backdrop,
- $74\ 00:03:07.070 \longrightarrow 00:03:10.090$ let me give you a little overview of this story.
- $75\ 00:03:10.090 \longrightarrow 00:03:12.070$ First we need to start with DIPG.
- $76\ 00:03:12.070 \longrightarrow 00:03:12.903$ This is a disease

- $77\ 00:03:12.903 \longrightarrow 00:03:14.741$ that I am actually relatively obsessed with
- 78 00:03:14.741 --> 00:03:17.500 having seen my first patient at Sloan-Kettering
- 79 00:03:17.500 --> 00:03:19.860 and watching that 3-year-old patient die
- $80\ 00:03:19.860 \longrightarrow 00:03:21.280$ was really touching for me.
- $81\ 00:03:21.280 \longrightarrow 00:03:22.842$ For the clinicians in the room,
- $82\ 00:03:22.842 \longrightarrow 00:03:25.390$ you know these films quite well.
- $83\ 00:03:25.390 \longrightarrow 00:03:26.540$ For the non-clinicians,
- 84 00:03:26.540 --> 00:03:28.530 this is an Axial T2 MRI,
- $85\ 00:03:28.530 \longrightarrow 00:03:29.770$ and then this is just to orient you
- $86\ 00:03:29.770 \longrightarrow 00:03:31.530$ for the non-clinicians.
- $87\ 00:03:31.530 --> 00:03:34.170$ This is very, very devastating tumor
- $88\ 00:03:34.170 \longrightarrow 00:03:35.010$ here in the brainstem,
- $89\ 00{:}03{:}35.010 \dashrightarrow 00{:}03{:}38.290$ which largely can be regarded as the Grand Central Station
- $90\ 00:03:38.290 \longrightarrow 00:03:39.720$ for the human body.
- 91 00:03:39.720 --> 00:03:43.420 And these tumors literally will take a child's life
- $92\ 00:03:43.420 \longrightarrow 00:03:45.170$ within about 2 years.
- 93 00:03:45.170 --> 00:03:46.003 Okay?
- 94 00:03:46.003 --> 00:03:47.500 And a picture is worth a thousand words,
- $95\ 00{:}03{:}47.500 \dashrightarrow 00{:}03{:}49.450$ and so I often like to show the pictures of patients
- $96\ 00:03:49.450 \longrightarrow 00:03:51.590$ that we've lost in our clinic to this disease
- 97 00:03:51.590 --> 00:03:53.800 to understand that we need to do something better.
- 98 00:03:53.800 --> 00:03:55.880 This child lasted about 2 years.
- 99 00:03:55.880 --> 00:03:59.960 On average, a patient with DIPG in 1990 would live
- $100\ 00:03:59.960 \longrightarrow 00:04:01.230$ about 9 months.
- $101\ 00:04:01.230 \longrightarrow 00:04:02.570$ How are we doing?
- $102~00{:}04{:}02.570 \dashrightarrow 00{:}04{:}05.740$ So in the last 20 years, we're still at about 9 months.
- 103 00:04:05.740 --> 00:04:07.600 It's actually quite depressing.

- $104\ 00:04:07.600 \longrightarrow 00:04:09.730$ And one of the things to note here is that biopsies
- $105\ 00:04:09.730 \longrightarrow 00:04:10.890$ in this disease are quite rare.
- $106\ 00:04:10.890 --> 00:04:13.890$ This is a very difficult area to get tissue,
- $107\ 00:04:13.890 \longrightarrow 00:04:15.750$ and so much of the treatments were based
- $108~00{:}04{:}15.750 \dashrightarrow 00{:}04{:}19.527$ on diagnostic MRI images, then with the assumption
- $109\ 00:04:19.527 \longrightarrow 00:04:24.140$ that these are just baby versions of adult gliomas.
- 110 00:04:24.140 --> 00:04:26.080 Once we began biopsying these tumors,
- $111\ 00:04:26.080 --> 00:04:28.890$ folks like Chris Coley in Neurosurgery Pediatrics here,
- $112\ 00:04{:}28.890 \dashrightarrow 00{:}04{:}30.630$ who did a lot of these biopsies when he was a fellow
- $113\ 00:04:30.630 \longrightarrow 00:04:32.840$ up in Boston, we suddenly realized
- $114\ 00:04:32.840 \longrightarrow 00:04:34.870$ that these were not adult tumors.
- 115 00:04:34.870 --> 00:04:35.980 These were very, very unique.
- $116\ 00:04:35.980 \longrightarrow 00:04:38.150$ The spectrum mutations were quite different.
- $117\ 00:04:38.150 \longrightarrow 00:04:40.420$ Some of you may recognize one of these mutations.
- 118 00:04:40.420 --> 00:04:43.800 This is a H3K27M mutation that's found in
- 119 00:04:43.800 --> 00:04:46.130 about 80 percent of DIPGs.
- $120\ 00:04:46.130 \longrightarrow 00:04:47.970$ This gene mutation
- 121 00:04:47.970 --> 00:04:49.580 profoundly affects chromatin structure
- $122\ 00:04:49.580 --> 00:04:52.020$ and leads to enormous range of gene expression
- $123\ 00:04:52.020 \longrightarrow 00:04:53.530$ and changes in the cell.
- $124\ 00{:}04{:}53.530 {\: \hbox{--}}{>}\ 00{:}04{:}56.830$ But a subset of these, these tumors also have the mutations
- $125\ 00:04:56.830 \longrightarrow 00:04:58.503$ in a phosphatase called PPM1D.
- $126\ 00:04:59.520 \longrightarrow 00:05:01.990$ So what's the role of PPM1D in DIPG?
- $127\ 00:05:01.990 \longrightarrow 00:05:03.600$ We'll get to that in just a moment.
- $128\ 00{:}05{:}03.600 \dashrightarrow 00{:}05{:}06.590$ What I'll tell you is, over the last 10 years or so,

- $129\ 00:05:06.590 --> 00:05:10.940$ there's no known role in epigenetic regulation for PPM1D.
- 130 00:05:10.940 --> 00:05:12.900 So just zooming in on this mutation.
- $131\ 00:05:12.900 \longrightarrow 00:05:15.300$ This is a phosphatase as I mentioned.
- 132 00:05:15.300 --> 00:05:18.440 And in 2014, so five years ago,
- $133\ 00:05:18.440 --> 00:05:21.000$ Hyan and colleagues at Duke showed that
- $134\ 00:05:21.000 \longrightarrow 00:05:23.650$ these mutations cluster in the C-terminal domain.
- 135 00:05:23.650 --> 00:05:25.450 They're heterozygous, and they're activating.
- $136\ 00{:}05{:}25.450 \dashrightarrow 00{:}05{:}28.810$ So they lead to a hyper stable version of this phosphatase.
- 137 00:05:28.810 --> 00:05:30.950 And interestingly, even though
- 138 00:05:30.950 --> 00:05:33.360 this gene was implicated in DIPG 5 years ago,
- $139\ 00:05:33.360 \longrightarrow 00:05:36.320$ we've known about this gene for actually about 20 years.
- 140 00:05:36.320 --> 00:05:39.070 Actually back in '97.
- $141\ 00:05:39.070 \longrightarrow 00:05:40.461$ This gene was also known as
- 142 00:05:40.461 --> 00:05:44.260 Wild-type p53-induced phosphatase 1.
- $143\ 00:05:44.260 \longrightarrow 00:05:45.950$ So these are the same gene.
- 144 00:05:45.950 --> 00:05:48.100 And these genes are actually implicated
- $145\ 00:05:48.100 \longrightarrow 00:05:49.670$ in things like breast cancer
- $146\ 00:05:49.670 --> 00:05:51.840$ as well as ovarian cancer and neuroblast
- $147\ 00:05:51.840 \longrightarrow 00:05:53.380$ and medulloblastoma.
- $148\ 00:05:53.380 \longrightarrow 00:05:55.430$ The difference is that the gene is actually amplified
- $149\ 00:05:55.430 \longrightarrow 00:05:58.010$ in these cases versus a hyper stable activation
- $150\ 00{:}05{:}58.010 \dashrightarrow 00{:}06{:}00.984$ via the heterozygous mutation here.
- $151\ 00:06:00.984 \longrightarrow 00:06:03.530$ So what do these mutations do?
- $152\ 00:06:03.530 \longrightarrow 00:06:05.580$ So PPM1D is actually involved
- $153\ 00{:}06{:}05.580 \dashrightarrow 00{:}06{:}09.881$ in dephosphorylating the SQT motif modifications
- $154\ 00:06:09.881 \longrightarrow 00:06:12.260$ induced by ATM and ATR.

- $155\ 00{:}06{:}12.260 \dashrightarrow 00{:}06{:}15.070$ And these are the types of proteinst that are targeted
- $156\ 00:06:15.070 \longrightarrow 00:06:16.490$ by PPM1D shown here.
- $157\ 00:06:16.490 --> 00:06:19.257$ One of the most commonly or well-established
- $158~00{:}06{:}19.257 \dashrightarrow 00{:}06{:}23.670$ targets is H2AX, so hyperactive PPM1D actually leads
- $159\ 00:06:23.670 \longrightarrow 00:06:26.060$ to an accelerated dephosphorylation of H2AX.
- $160\ 00{:}06{:}26.060 \dashrightarrow 00{:}06{:}29.249$ So it's thought to in principle disrupt the DNA repair
- $161\ 00:06:29.249 \longrightarrow 00:06:30.888$ and DNA response.
- $162\ 00:06:30.888 \longrightarrow 00:06:33.580$ So from our perspective, for our laboratory,
- $163\ 00:06:33.580 \longrightarrow 00:06:35.490$ there's sort of a fork in the road.
- 164 00:06:35.490 --> 00:06:37.950 How do we target these mutations, right?
- $165\ 00:06:37.950 \longrightarrow 00:06:38.783$ So on one end,
- $166\ 00:06:38.783 \longrightarrow 00:06:40.617$ we could just block aberrant phosphatase activity, right?
- $167\ 00:06:40.617 --> 00:06:42.970$ And so those that know our lab and IDH1 story,
- $168\ 00:06:42.970 \longrightarrow 00:06:45.020$ we don't like doing that, okay?
- $169\ 00:06:45.020 \longrightarrow 00:06:47.100$ And there are drugs that have been developed.
- 170 00:06:47.100 --> 00:06:48.820 Actually for the last 10 or 12 years,
- $171\ 00{:}06{:}48.820 {\: -->\:} 00{:}06{:}51.000$ there's about 3 or 4 drugs that have been developed
- 172 00:06:51.000 --> 00:06:53.430 that simply block the phosphatase activity.
- $173\ 00:06:53.430 \longrightarrow 00:06:55.290$ Most of them are not drug-like,
- $174\ 00:06:55.290 \longrightarrow 00:06:56.570$ none are in clinical trials,
- $175\ 00:06:56.570 \longrightarrow 00:06:58.950$ and overall they haven't been that effective
- $176\ 00:06:58.950 \longrightarrow 00:07:00.920$ as an anti-tumor strategy for tumors
- $177\ 00:07:00.920 \longrightarrow 00:07:02.930$ that have these types of mutations.
- 178 00:07:02.930 --> 00:07:04.100 So we're, again, very interested
- 179 00:07:04.100 --> 00:07:06.000 in exploiting Achilles Heels,
- $180\ 00:07:06.000 \longrightarrow 00:07:08.649$ or tumor-associated defects,
- $181\ 00:07:08.649 --> 00:07:11.950$ hopefully by DNA repair given the role of this

- $182\ 00:07:11.950 \longrightarrow 00:07:13.883$ mutation in DNA repair.
- $183\ 00{:}07{:}14.860 \dashrightarrow 00{:}07{:}17.070$ So with that, entered our first graduate student
- $184\ 00:07:17.070 \longrightarrow 00:07:18.940$ in the laboratory several years ago, Nate Fons.
- $185\ 00:07:18.940 \dashrightarrow 00:07:21.790$ And Nate set out to model the PPM1D mutation,
- $186\ 00:07:21.790 \longrightarrow 00:07:22.840$ and to simply ask a question
- $187\ 00:07:22.840 \longrightarrow 00:07:24.020$ whether we could do a drug screen
- $188\ 00:07:24.020 \longrightarrow 00:07:26.230$ with an isogenic cell lines.
- $189\ 00:07:26.230 --> 00:07:27.910$ So it actually took him about a year and half
- $190\ 00:07:27.910 \longrightarrow 00:07:30.510$ to make this model, and this is shown here.
- $191\ 00:07:30.510 \longrightarrow 00:07:32.470$ This is a truncated activated form.
- $192\ 00:07:32.470 \longrightarrow 00:07:35.080$ We targeted that C-terminal domain
- $193\ 00:07:35.080 \longrightarrow 00:07:37.030$ where the DIPG mutations are found.
- $194\ 00:07:37.030 --> 00:07:38.890$ And you can see this hyper activated, or
- $195\ 00:07:38.890 --> 00:07:40.910$ of high levels of expression by western blot.
- $196\ 00{:}07{:}40.910 \dashrightarrow 00{:}07{:}42.850$ And he did all the things a good grad student should,
- $197\ 00:07:42.850 \dashrightarrow 00:07:45.550$ which is looked at protein stability and confirmed indeed
- $198\ 00:07:45.550 \longrightarrow 00:07:48.510$ that this is a hyper stable form of the protein.
- $199\ 00:07:48.510 \longrightarrow 00:07:51.200$ And he did funcuatzie these to show
- $200\ 00:07:51.200$ --> 00:07:53.630 that this mutation was active in the sense that
- 201 00:07:53.630 --> 00:07:57.020 post-IR could get an accelerated dephosphorylation of H2AX,
- 202 00:07:57.020 --> 00:07:59.660 and this was dependent upon PPM1D activity
- $203\ 00:07:59.660 \longrightarrow 00:08:01.690$ because treatment with a PPM1D inhibitor
- $204\ 00:08:01.690 \longrightarrow 00:08:03.050$ abolished that effect.
- $205\ 00:08:03.050 \longrightarrow 00:08:05.800$ And this is just a FOSI example shown here.
- 206 00:08:05.800 --> 00:08:07.500 Then Nate, after about a year and a half,
- $207\ 00:08:07.500 \longrightarrow 00:08:10.300$ or 2 years or so, went on to do a screen,
- $208\ 00:08:10.300 \longrightarrow 00:08:12.140$ and we used the platform that we developed

- 209 00:08:12.140 --> 00:08:14.610 to find the IDH induced PARP sensitivity
- $210\ 00:08:14.610 \longrightarrow 00:08:16.800$ that some of you heard me talk about before.
- 211 00:08:16.800 --> 00:08:19.449 This is a 96 well plate medium throughput
- $212\ 00:08:19.449 \longrightarrow 00:08:21.760$ viability screen that we developed.
- $213\ 00:08:21.760 \longrightarrow 00:08:23.040$ And we were super excited
- $214\ 00:08:23.040 --> 00:08:26.265$ because our idea was that we were going to essentially get,
- 215 00:08:26.265 --> 00:08:28.990 IDH impairment sensitivity,
- 216 00:08:28.990 --> 00:08:31.640 PPM1D hyperactive dis-regulation of DNA repair,
- $217\ 00:08:31.640 \longrightarrow 00:08:34.380$ that we would get another hit in that class.
- $218\ 00{:}08{:}34.380 \dashrightarrow 00{:}08{:}36.377$ So Nate looked at about 100 DNA repair inhibitors
- $219\ 00:08:36.377 --> 00:08:38.100$ and DNA damaging agents.
- 220 00:08:38.100 --> 00:08:40.728 And to our surprise, we found nothing,
- $221\ 00:08:40.728 \longrightarrow 00:08:42.260$ which that was always really stressful
- 222 00:08:42.260 --> 00:08:43.420 when it's your first graduate student,
- 223 00:08:43.420 --> 00:08:45.200 and that's their screen after 2 years, right?
- 224 00:08:45.200 --> 00:08:46.690 So it's a tough thesis meeting.
- $225~00{:}08{:}46.690 \dashrightarrow 00{:}08{:}51.690$ However, it turns out that we had one extra row
- $226\ 00:08:52.300 \longrightarrow 00:08:53.460$ in the 96 well plate.
- 227 00:08:53.460 --> 00:08:54.550 I just love telling this story
- $228\ 00:08:54.550 --> 00:08:57.530$ because it's sort of the story of how academia often
- $229\ 00:08:57.530 \longrightarrow 00:08:59.010$ operates.
- $230\ 00:08:59.010$ --> 00:09:02.190 We had one extra row, and I was actually doing the plating
- 231 00:09:02.190 --> 00:09:03.960 back in the day and the folks in my lab just said
- $232\ 00:09:03.960 \longrightarrow 00:09:06.260$ remind that I was in the laboratory, and
- $233\ 00:09:06.260 \longrightarrow 00:09:07.960$ I actually had plated, we had one extra row

- $234\ 00:09:07.960$ --> 00:09:11.510 and we put in some NAMPT, a NAMPT inhibitor row
- $235\ 00:09:11.510 \longrightarrow 00:09:13.940$ based on a paper by Dan Cahill up in Boston.
- 236 00:09:13.940 --> 00:09:15.500 He had shown that IDH mutations,
- $237\ 00:09:15.500 \longrightarrow 00:09:17.570$ again our laboratory is very interested in those,
- $238\ 00:09:17.570 \longrightarrow 00:09:19.290$ those mutations as well.
- 239 00:09:19.290 --> 00:09:21.750 He had shown that IDH mutations confer sensitivity
- $240\ 00:09:21.750 \longrightarrow 00:09:23.634$ to the NAMPT inhibitors
- 241 00:09:23.634 --> 00:09:25.582 via this NAD depletion phenotype.
- $242\ 00:09:25.582$ --> 00:09:29.460 And this is the drug we added to this, this set of plates.
- $243\ 00:09:29.460 \longrightarrow 00:09:31.650$ Oddly enough, that was the only hit in our screen,
- $244\ 00:09:31.650 \longrightarrow 00:09:33.363$ which was very surprising to us.
- $245\ 00:09:34.240 \dashrightarrow 00:09:36.880$ So what is NAD, and what are NAMPT inhibitors?
- 246 00:09:36.880 --> 00:09:38.170 This is a pathway.
- 247 00:09:38.170 --> 00:09:39.790 Again, when we worked on the IDH stuff,
- 248 00:09:39.790 --> 00:09:41.670 we actually had to relearn the citric acid cycle,
- $249\ 00:09:41.670 --> 00:09:44.380$ and here we had to learn about NAD
- $250\ 00:09:44.380 \longrightarrow 00:09:45.730$ during the course of this work.
- 251 00:09:45.730 --> 00:09:48.340 And this is the NAD sort of cycle,
- $252\ 00:09:48.340 \dashrightarrow 00:09:50.530$ and there's multiple different ways to generate NAD
- $253\ 00:09:50.530 \longrightarrow 00:09:52.900$ which is sort of the central currency of life
- 254~00:09:52.900 --> 00:09:55.110 in a metabolizing cell.
- $255\ 00:09:55.110 \longrightarrow 00:09:57.607$ And so the first thing we did was actually just
- 256 00:09:57.607 --> 00:09:59.040 cold called a guy named Charlie Brenner.
- $257\ 00:09:59.040 --> 00:10:02.170$ He's out at Iowa, and he discovered a very, very
- $258\ 00:10:02.170$ --> 00:10:06.490 critical pathway in the NAD biosynthetic pathway.

- $259\ 00:10:06.490 \longrightarrow 00:10:07.650$ And we called and we said
- 260 00:10:07.650 --> 00:10:09.160 we've got this very odd
- $261\ 00:10:09.160 \dashrightarrow 00:10:12.080$ PPM1D induced NAMPT inhibitor sensitivity,
- 262 00:10:12.080 --> 00:10:13.050 can you help us out?
- 263 00:10:13.050 --> 00:10:14.430 And just to orient folks,
- $264\ 00{:}10{:}14.430 \dashrightarrow 00{:}10{:}17.780\ NAMPT$ is a critical player in the NAMPT salvage pathway
- $265\ 00:10:17.780 \longrightarrow 00:10:21.930$ that essentially regenerates NAD and it's
- $266\ 00{:}10{:}21.930 \dashrightarrow 00{:}10{:}24.620$ blocked by these drugs called NAMPT inhibitors.
- 267 00:10:24.620 --> 00:10:26.050 So just sort of Cliff notes, and again,
- $268~00{:}10{:}26.050 \dashrightarrow 00{:}10{:}27.820$ aging myself by using Cliff notes
- $269\ 00{:}10{:}27.820 \dashrightarrow 00{:}10{:}29.660$ because I know about 90 percent of the audience
- $270\ 00:10:29.660 \longrightarrow 00:10:31.000$ does not know what these are.
- 271 00:10:31.000 --> 00:10:32.620 Nut these were very, very useful
- $272\ 00:10:32.620 \longrightarrow 00:10:34.220$ before the days of Google.
- $273\ 00:10:34.220 \dashrightarrow 00:10:36.610$ And so NAMPT inhibitors are interesting drugs.
- $274\ 00{:}10{:}36.610 \dashrightarrow 00{:}10{:}38.490$ There's actually a diverse range of drugs out there.
- $275\ 00:10:38.490 \longrightarrow 00:10:39.830$ They're highly potent.
- $276\ 00:10:39.830 \dashrightarrow 00:10:42.500$ They've actually been tested in Phase 1 and 2 trials.
- $277\ 00:10:42.500 \longrightarrow 00:10:44.420$ There's still a few
- $278\ 00:10:44.420 \longrightarrow 00:10:45.660$ drugs that are being tested.
- $279\ 00:10:45.660 --> 00:10:47.080$ Most have actually been shelved
- $280\ 00:10:47.080 \longrightarrow 00:10:48.890$ because there really is no biomarker.
- 281 00:10:48.890 --> 00:10:50.210 There's actually a lot of toxicity
- $282\ 00:10:50.210 \longrightarrow 00:10:52.600$ in the face of limited efficacy.
- 283 00:10:52.600 --> 00:10:54.050 So with that sort of backdrop,
- $284\ 00:10:54.050 \longrightarrow 00:10:56.900$ Nate went on to probe this interaction further.

- $285~00{:}10{:}56.900 \dashrightarrow 00{:}11{:}00.360$ He first ruled out any clonal artifact from CRISPR,
- $286\ 00:11:00.360 --> 00:11:02.100$ and he showed a multiple CRSPR clones that
- $287\ 00{:}11{:}02.100 --> 00{:}11{:}05.350$ we had very nice NAMPT sensitivity in the PPM1D mutants.
- 288 00:11:05.350 --> 00:11:06.930 He then showed it was a class specific,
- $289\ 00:11:06.930 \longrightarrow 00:11:08.650$ not just a drug effect.
- $290\ 00:11:08.650 \longrightarrow 00:11:10.710$ He showed that with multiple, structurally unique
- $291\ 00:11:10.710 \longrightarrow 00:11:12.500$ NAMPT inhibitors that we could still get
- $292\ 00:11:12.500$ --> 00:11:16.200 mutant PPM1D induced differential sensitivity.
- 293 00:11:16.200 --> 00:11:17.110 And then as I mentioned earlier,
- 294 00:11:17.110 --> 00:11:19.540 we had the activating truncating mutations
- $295\ 00:11:19.540 \longrightarrow 00:11:21.250$ as well as the amplifications.
- $296\ 00:11:21.250 --> 00:11:23.130$ He went on to show that over expression
- $297~00{:}11{:}23.130 \dashrightarrow 00{:}11{:}26.930$ of both full-length or truncated PPM1D could also
- 298 00:11:26.930 --> 00:11:29.000 recapitulate the NAMPT sensitivity.
- $299~00{:}11{:}29.000 \dashrightarrow 00{:}11{:}32.540$ Uh, in contrast, a catalycally inactive version of PPM1D
- $300\ 00{:}11{:}32.540 \dashrightarrow 00{:}11{:}35.335$ was unable to confer NAMPT inhibitor sensitivity.
- $301\ 00:11:35.335 \longrightarrow 00:11:38.830$ So we then sent ourselves to Charlie Brenner's developed,
- $302\ 00{:}11{:}38.830 \dashrightarrow 00{:}11{:}42.750$ high resolution NAD metabolic profiling platform.
- $303\ 00:11:42.750 \longrightarrow 00:11:45.230$ And he sent us back some intriguing data
- $304~00{:}11{:}45.230 \dashrightarrow 00{:}11{:}48.900$ in that really all the NAD precursors were suppressed.
- $305\ 00:11:48.900 --> 00:11:50.710$ And at base line you can see here Wild site
- $306\ 00:11:50.710 --> 00:11:52.030$ versus the PPM1D mute.
- $307\ 00:11:52.030 \longrightarrow 00:11:54.450$ You can see base line, uh, depressed levels.
- 308 00:11:54.450 --> 00:11:55.920 When you treat with a NAMPT inhibitor,

- 309 00:11:55.920 --> 00:11:58.790 then you get critically low levels of NAD
- 310 00:11:58.790 --> 00:12:01.950 which we believe is contributing to the loss
- $311\ 00:12:01.950 \longrightarrow 00:12:03.890$ of viability in those cells.
- $312\ 00:12:03.890 \longrightarrow 00:12:06.130$ So then zooming in on this.
- 313 00:12:06.130 --> 00:12:10.010 We worked with Charlie, uh, to sort of probe
- $314\ 00:12:10.010 \longrightarrow 00:12:12.410$ the mechanistic basis for this phenomenon.
- $315\ 00:12:12.410 \longrightarrow 00:12:15.590$ Charlie suggested that we start repleting or rescuing,
- $316\ 00:12:15.590 \longrightarrow 00:12:16.960$ with various precursors.
- $317\ 00:12:16.960 --> 00:12:20.780$ Adding NAM, adding NR, and adding NA to test the integrity
- $318\ 00:12:20.780 \longrightarrow 00:12:22.200$ of each of these pathways.
- 319 00:12:22.200 --> 00:12:23.033 Okay?
- 320 00:12:23.033 --> 00:12:25.560 So, these are synergy or antagonism plots
- 321 00:12:25.560 --> 00:12:26.700 that I'm showing you right here.
- 322 00:12:26.700 --> 00:12:28.127 So, this is the drug NAMPT inhibitor,
- $323\ 00:12:28.127 --> 00:12:31.390$ and then this is the NAD precursor that we're adding.
- 324 00:12:31.390 --> 00:12:34.370 Red indicates an antagonistic effect,
- $325\ 00{:}12{:}34.370 \dashrightarrow 00{:}12{:}36.510$ essentially showing that that pathway is intact.
- 326 00:12:36.510 --> 00:12:37.343 Okay?
- $327\ 00{:}12{:}37.343 \dashrightarrow 00{:}12{:}39.820$ So adding NAM you can see then by passes the effect
- 328 00:12:39.820 --> 00:12:40.653 of the NAMPT inhibitor,
- $329\ 00:12:40.653 \longrightarrow 00:12:42.330$ so that pathway essentially was intact.
- 330 00:12:42.330 --> 00:12:46.020 Adding NR, his favorite NAD precursor
- $331\ 00:12:46.020 \longrightarrow 00:12:47.720$ also led to antagonism.
- $332\ 00:12:47.720 \longrightarrow 00:12:50.070$ But the one intriguing result
- $333\ 00:12:50.070 \longrightarrow 00:12:51.490$ was shown here on the left.
- $334\ 00:12:51.490 \longrightarrow 00:12:52.510$ When you add NA,
- $335\ 00:12:52.510 \longrightarrow 00:12:53.670$ we're unable to antagonize,

 $336\ 00:12:53.670 \longrightarrow 00:12:56.270$ suggesting the defect in this pathway to converge

 $337\ 00:12:56.270 --> 00:12:59.913$ with NAMN which is mediated by this protein called NAPRT.

 $338~00:13:01.060 \dashrightarrow 00:13:03.468$ In parallel, Nate then did a siRNA screen

 $339\ 00:13:03.468 --> 00:13:05.600$ knocking down each one of these drugs

 $340\ 00{:}13{:}05.600 \dashrightarrow 00{:}13{:}08.950$ to see which one would phenocopy the PPM1D mutation

341 00:13:08.950 --> 00:13:10.900 causing NAMPT inhibitor sensitivity.

 $342\ 00:13:10.900 \longrightarrow 00:13:14.070$ And he found one gene target of interest.

 $343\ 00:13:14.070 \longrightarrow 00:13:15.590$ And indeed that was NAPRT,

 $344\ 00:13:15.590 \longrightarrow 00:13:17.390$ and that's shown here in the orange.

 $345\ 00{:}13{:}18.490 \dashrightarrow 00{:}13{:}21.400$ We then rushed back to our cell lines and asked the question

 $346\ 00:13:21.400 --> 00:13:23.090$ well, what is the status of NAPRT expression

 $347\ 00:13:23.090 \longrightarrow 00:13:23.923$ in these cell lines?

 $348\ 00:13:23.923 \longrightarrow 00:13:24.790$ Maybe there's a problem with it.

349 00:13:24.790 --> 00:13:25.710 And to our surprise,

 $350\ 00:13:25.710 \longrightarrow 00:13:28.860$ in all of the lines that had engineered a PPM1D mutation,

 $351~00{:}13{:}28.860 \dashrightarrow 00{:}13{:}33.420$ they had lost NAPRT expression under these conditions.

 $352\ 00:13:33.420 \longrightarrow 00:13:35.280$ We then went ahead and said

 $353\ 00:13:35.280$ --> 00:13:38.480 well is NAPRT loss accounting for the NAMPT sensitivity?

 $354\ 00{:}13{:}38.480 \dashrightarrow 00{:}13{:}41.910$ So he over expressed NAPRT in the PPM1D mutant cells,

 $355\ 00:13:41.910 --> 00:13:43.350$ and that's shown here in the blue bar,

 $356\ 00:13:43.350 \longrightarrow 00:13:44.900$ so they completely rescue the effect.

 $357\ 00{:}13{:}44.900$ --> $00{:}13{:}47.693$ So this is really being driven by loss of NAPRT.

358 00:13:48.672 --> 00:13:49.505 (throat clearing)

 $359\ 00:13:49.505 --> 00:13:51.588$ We then moved again in our process flow

360~00:13:51.588 --> 00:13:53.000 to patient-derived models which obviously are more relevant

 $361\ 00:13:53.000 \longrightarrow 00:13:54.970$ to the human situation.

 $362\ 00:13:54.970 \longrightarrow 00:13:57.440$ And we got some patient-derived

 $363\ 00{:}13{:}57.440 \dashrightarrow 00{:}14{:}00.910\ 3D$ DIPG cultures from Michelle Monje out at Stanford.

 $364\ 00{:}14{:}00{.}910 \dashrightarrow 00{:}14{:}04{.}450$ And you can see here again in the mutant PPM1D

 $365\ 00:14:04.450$ --> 00:14:06.580 cultures shown here that we had loss of NAPRT.

366 00:14:06.580 --> 00:14:07.730 So we could recapitulate,

 $367\ 00:14:07.730 --> 00:14:10.500$ we could see this also in patient-derived models,

 $368\ 00{:}14{:}10.500$ --> $00{:}14{:}13.890$ and that led to profound sensitivity to a NAMPT inhibitor.

369 00:14:13.890 --> 00:14:15.290 And that's shown here, and again,

 $370\ 00:14:15.290 \longrightarrow 00:14:18.403$ just by eying these 3D cultures, it's quite striking.

 $371\ 00:14:19.270 --> 00:14:21.790$ Working with Ranjini our fearless lab manager in the lab,

 $372\ 00{:}14{:}21.790 \dashrightarrow 00{:}14{:}25.560$ we developed a PPM1D mutant flank zenograph model.

 $373\ 00:14:25.560 \longrightarrow 00:14:27.050$ And then we also showed

 $374\ 00:14:27.050 \longrightarrow 00:14:29.810$ that this effect could be recapitulated in vivo

 $375\ 00:14:29.810 \longrightarrow 00:14:32.566$ in this flank model shown here.

 $376\ 00:14:32.566 \longrightarrow 00:14:34.950$ Now narrowing in on the mechanism.

 $377\ 00:14:34.950 \longrightarrow 00:14:35.783$ So we ask,

 $378\ 00{:}14{:}35.783 \dashrightarrow 00{:}14{:}37.770$ well the protein is down so what exactly is happening?

 $379\ 00:14:37.770 \longrightarrow 00:14:40.030$ This is not thought to be an epigenetic modifier,

380 00:14:40.030 --> 00:14:41.230 this mutation.

381 00:14:41.230 --> 00:14:42.810 But could this be possible?

 $382\ 00{:}14{:}42.810 \dashrightarrow 00{:}14{:}45.610$ So here's a Tacksman analysis of MRI transcript levels.

 $383\ 00{:}14{:}45.610 \dashrightarrow 00{:}14{:}49.095$ You can see here we have reduction of, uh, of NAPRT levels,

 $384\ 00:14:49.095 --> 00:14:53.320$ in our PPM1D mutant engineered and patient-derived lines.

 $385\ 00:14:53.320 --> 00:14:55.810$ We then went and did a series of ChIP Assays

 $386\ 00:14:55.810 \longrightarrow 00:14:58.430$ at pretty comprehensive panel looking at the promoter,

387~00:14:58.430 --> 00:15:00.170 which I won't show you today that suggested that

388 00:15:00.170 --> 00:15:02.720 there was some sort of repressive effect of the promoter.

 $389\ 00:15:02.720 \longrightarrow 00:15:03.910$ And then more importantly,

 $390~00{:}15{:}03.910 \dashrightarrow 00{:}15{:}06.280$ we showed that there was elevated 5 methylcytosine

 $391\ 00:15:06.280 \longrightarrow 00:15:08.020$ directly at the NAPRT promoter.

392 00:15:08.020 --> 00:15:09.820 And this is just a methyl-dip assay.

393 00:15:09.820 --> 00:15:12.320 Again, just glossing over this because of time.

 $394\ 00:15:12.320 \longrightarrow 00:15:13.700$ But this really suggested to us that

 $395~00{:}15{:}13.700 \dashrightarrow 00{:}15{:}16.070$ the promoter's actually being silenced

396 00:15:16.070 --> 00:15:17.963 by mutant PPM1D.

397 00:15:19.460 --> 00:15:21.640 So we sought to probe this a little bit deeper,

 $398~00{:}15{:}21.640 \dashrightarrow 00{:}15{:}23.690$ and I'll show you just a little smattering of the,

 $399\ 00:15:23.690 --> 00:15:26.340$ of the data that, uh, we've gotten more recently.

400 00:15:26.340 --> 00:15:27.890 Uh, so we brought in a bioinformatics group

 $401~00{:}15{:}27.890 \dashrightarrow 00{:}15{:}30.430$ and did whole methylene profiling to understand

 $402\ 00:15:30.430 \longrightarrow 00:15:32.500$ whether this was focal or global.

 $403\ 00:15:32.500 --> 00:15:34.640$ Uh, we actually expanded our patient-derived line.

 $404\ 00:15:34.640 \longrightarrow 00:15:35.473$ There's sets of lines.

 $405\ 00{:}15{:}35{.}473 \dashrightarrow 00{:}15{:}39{.}130$ There's actually only a handful of PPM1D mutant DIPG lines

- $406\ 00:15:39.130 \longrightarrow 00:15:40.970$ in the world, and we are able to get them.
- $407\ 00{:}15{:}40.970 \dashrightarrow 00{:}15{:}43.130$ And then we sort of looked and asked the question
- $408\ 00{:}15{:}43.130 \dashrightarrow 00{:}15{:}46.850$ of whether this was a specific, uh, NAPRT promoter specific,
- $409\ 00:15:46.850 \longrightarrow 00:15:49.600$ or a global methylation, uh, phenotype.
- $410\ 00:15:49.600 \longrightarrow 00:15:50.880$ Uh, so we brought in the folks from TGEN.
- 411 00:15:50.880 --> 00:15:52.700 We've been working with Mike Berens for quite some time,
- $412\ 00:15:52.700 \longrightarrow 00:15:54.540$ and asked them to join.
- $413\ 00:15:54.540 --> 00:15:57.020$ And then we reached out to folks across the pond,
- 414 00:15:57.020 --> 00:15:59.410 namely Chris Jones and the Carcaboso Lab,
- $415\ 00{:}15{:}59.410 \dashrightarrow 00{:}16{:}02.420$ who some of these PPM1D patient-derived models
- 416 00:16:02.420 --> 00:16:04.170 for some of our work.
- $417\ 00:16:04.170 \dashrightarrow 00:16:07.750$ What we first soun- what we first found looking at $850\mathrm{K},$
- $418\ 00:16:07.750 \longrightarrow 00:16:10.150$ whole methylene in profiling is shown here.
- $419\ 00:16:10.150 \longrightarrow 00:16:12.550$ You can see in this red for the beta values,
- 420 00:16:12.550 --> 00:16:16.030 that largely the PPM1D mutants had a focal,
- $421\ 00{:}16{:}16.030 \dashrightarrow 00{:}16{:}18.790$ dense hyper methylation of the NAPRT promoter.
- $422\ 00:16:18.790 \longrightarrow 00:16:21.070$ And actually when you look at global methylation profiling,
- 423 00:16:21.070 --> 00:16:23.000 you can see that on average, again,
- $424\ 00:16:23.000 \longrightarrow 00:16:24.430$ yellow are the mutant lines.
- $425\ 00:16:24.430 \longrightarrow 00:16:28.025$ You can see this cluster of methylation targets,
- $426\ 00{:}16{:}28.025 \dashrightarrow 00{:}16{:}31.180$ essentially a CPG island like methylene phenotype
- $427\ 00:16:31.180 \longrightarrow 00:16:33.160$ that we're seeing in the PPM1D mutants.
- $428\ 00{:}16{:}33.160 \dashrightarrow 00{:}16{:}35.640$ Again, we're seeing this both in the patient-derived lines

- $429\ 00{:}16{:}35.640 \dashrightarrow 00{:}16{:}39.200$ as well as in our engineered lines in this systems.
- 430 00:16:39.200 --> 00:16:40.740 So just sort of our working model.
- 431 00:16:40.740 --> 00:16:42.390 This was just published about two weeks ago
- 432 00:16:42.390 --> 00:16:43.770 in Nature Communications.
- $433\ 00{:}16{:}43.770 \dashrightarrow 00{:}16{:}46.770$ What we're finding is that elevated PPM1D activation
- $434\ 00{:}16{:}46.770 \dashrightarrow 00{:}16{:}49.700$ leads to silencing of NAPRT likely in the context
- 435 00:16:49.700 --> 00:16:52.080 of a CPG island like methylene phenotype,
- $436\ 00:16:52.080 --> 00:16:55.270$ which in activates this press handler salvage pathway
- $437~00{:}16{:}55.270 \dashrightarrow 00{:}16{:}58.161$ essentially silencing NAPRT leading to the depletion of NAD
- $438\ 00{:}16{:}58.161 \dashrightarrow 00{:}17{:}01.590$ and a setup, essentially a metabolic vulnerability
- $439\ 00:17:01.590 \longrightarrow 00:17:03.740$ for treatment with NAMPT inhibitors.
- $440\ 00:17:03.740 \longrightarrow 00:17:06.010$ There's a lot more work to be done here,
- 441 00:17:06.010 \rightarrow 00:17:07.890 and because of time, I won't go into those questions,
- $442\ 00:17:07.890 -> 00:17:10.850$ but this work is really just beginning for us.
- $443\ 00{:}17{:}10.850 \dashrightarrow 00{:}17{:}13.320$ Bringing it now back to IDH1, so some of you know
- $444\ 00{:}17{:}13.320 {\: -->\:} 00{:}17{:}16.590$ some of the adult midline supratentorial gliomas
- $445\ 00:17:16.590 \longrightarrow 00:17:18.290$ have IDH mutations.
- 446 00:17:18.290 --> 00:17:20.560 And there's a really an intriguing leak, link
- $447\ 00:17:20.560 \longrightarrow 00:17:22.110$ between PPM1D and IDH1.
- $448\ 00{:}17{:}22.110 \dashrightarrow 00{:}17{:}24.900$ I alluded to this earlier from the Dan Cahill work
- 449 00:17:24.900 --> 00:17:26.860 that actually prompted us to serendipitously
- $450\ 00:17:26.860 \longrightarrow 00:17:29.150$ sort of make this discovery.
- $451\ 00{:}17{:}29.150 \dashrightarrow 00{:}17{:}31.440$ And what, what Dan and colleagues actually found was

- 452 00:17:31.440 --> 00:17:33.640 similarly in IDH mutants as well,
- $453\ 00{:}17{:}33.640 \dashrightarrow 00{:}17{:}36.520$ they silence NAPRT leading to an NAD depletion.
- $454\ 00{:}17{:}36.520 \dashrightarrow 00{:}17{:}39.330$ So we don't understand why a dult and pediatric tumors
- $455\ 00:17:39.330 \longrightarrow 00:17:42.670$ with these mutations are silencing
- $456\ 00:17:42.670 --> 00:17:44.880$ this pathway, but there's clearly a theme
- $457\ 00{:}17{:}44.880 \dashrightarrow 00{:}17{:}49.880$ across all age groups for these tumors for NAD depletion.
- 458 00:17:50.160 --> 00:17:52.000 So in the last just 5 minutes or so,
- $459\ 00:17:52.000 \longrightarrow 00:17:53.490$ I'll tell you about what we're doing to get this
- $460\ 00:17:53.490 \longrightarrow 00:17:55.000$ into the clinic.
- $461\ 00:17:55.000 --> 00:17:56.670$ So as many of you know we are very interested
- $462\ 00{:}17{:}56.670 \dashrightarrow 00{:}17{:}58.410$ in trying to drive some of the work that we do
- 463 00:17:58.410 --> 00:18:00.300 into patients as soon as possible.
- $464\ 00:18:00.300 \longrightarrow 00:18:02.690$ And this is work that I think
- 465 00:18:02.690 --> 00:18:04.380 many of you seen us present, and this is work
- 466~00:18:04.380 --> 00:18:07.276 from the Glazer Lab, Stephanie Halene's lab, Morokinaw,
- 467 00:18:07.276 --> 00:18:09.820 and my laboratory, essentially mapping out
- 468 00:18:09.820 --> 00:18:11.690 this oncometabolite-induced brachinist
- 469 00:18:11.690 --> 00:18:13.430 that leads to NAPRT sensitivity.
- 470 00:18:13.430 --> 00:18:14.710 And so we've done this before,
- $471\ 00:18:14.710 \longrightarrow 00:18:16.430$ and we've been able to translate this work
- $472\ 00:18:16.430 \longrightarrow 00:18:18.480$ into multiple clinical trials shown here.
- $473\ 00:18:18.480 \longrightarrow 00:18:20.690$ And really a testament to the cancer center,
- 474 00:18:20.690 --> 00:18:23.720 namely folks like, uh, Pat Lorusso, Paul Eder,
- $475\ 00{:}18{:}23.720$ --> $00{:}18{:}26.600$ Asher Marks, Toma Tebaldi, and again Stephanie Halene
- 476 00:18:26.600 --> 00:18:30.200 to really drive this into our patients.
- $477\ 00{:}18{:}30.200 \longrightarrow 00{:}18{:}33.270$ So the questions for this were how we're going to get this

- $478\ 00:18:33.270 --> 00:18:37.560$ into the clinic, recognizing some of these huge caveats
- $479\ 00:18:37.560 \longrightarrow 00:18:39.900$ that I'm going spend the last few minutes on.
- $480\ 00:18:39.900 \longrightarrow 00:18:41.710$ So first of all, there are a number of barriers
- $481~00{:}18{:}41.710 \dashrightarrow 00{:}18{:}45.470$ to a systemic NAMPT inhibitor trial, uh, in DIPG
- $482\ 00:18:45.470 \longrightarrow 00:18:47.010$ that we'll touch upon in a moment.
- $483\ 00:18:47.010 --> 00:18:49.010$ We would love to consider combinations
- 484 00:18:49.010 --> 00:18:50.700 with both radiation and chemotherapy
- $485\ 00:18:50.700 \longrightarrow 00:18:52.980$ because we don't think monotherapy for any of these,
- $486\ 00:18:52.980 --> 00:18:55.510$ these aggressive gliomas is going to be sufficient.
- $487\ 00:18:55.510 \dashrightarrow 00:18:58.260$ And I'll tell you a little bit about some surprising
- $488\ 00{:}18{:}58.260 \dashrightarrow 00{:}19{:}00.480$ results about the blood brain barrier penetration
- $489\ 00:19:00.480 \longrightarrow 00:19:02.600$ of some of the drugs that are out there.
- $490\ 00:19:02.600 \longrightarrow 00:19:04.957$ So just a few, uh, few points on the first $491\ 00:19:04.957 \longrightarrow 00:19:07.370$ the first question.
- $492\ 00:19:07.370 --> 00:19:10.580$ So, as I mentioned, multiple NAMPT inhibitor trials
- $493\ 00:19:10.580 \longrightarrow 00:19:12.790$ have been initiated and closed.
- 494 00:19:12.790 --> 00:19:14.854 Most of them ended with lack of efficacy,
- 495 00:19:14.854 --> 00:19:17.950 and pretty significant doxylamine toxicity.
- $496\ 00:19:17.950 --> 00:19:20.540$ A lot of folks would say that the
- $497\ 00{:}19{:}20.540 \to 00{:}19{:}23.210$ lack of efficacy was simply that these were solid tumor
- 498 00:19:23.210 --> 00:19:24.780 Phase 1 trials with no biomarkers.
- 499 00:19:24.780 --> 00:19:27.630 They were not trying to find for any specific
- 500 00:19:27.630 --> 00:19:29.660 biomarker that could confer sensitivity.
- 501 00:19:29.660 --> 00:19:32.527 And the liabilities in particular were
- 502 00:19:32.527 --> 00:19:34.620 hemologic and retinal toxicity

 $503\ 00:19:34.620 --> 00:19:36.950$ which have really spooked a lot of folks that are,

 $504\ 00:19:36.950 \longrightarrow 00:19:39.760$ are developing NAMPT inhibitors at the moment,

 $505\ 00:19:39.760 \longrightarrow 00:19:41.150$ and they've shelved them.

 $506\ 00:19:41.150 --> 00:19:43.460$ This is just one paper to show you an example of,

507 00:19:43.460 --> 00:19:45.260 of this finding.

508 00:19:45.260 --> 00:19:46.830 So, in parallel to that,

509~00:19:46.830 --> 00:19:50.440 we'd love to explore the concept of combining this

 $510\ 00:19:50.440 \longrightarrow 00:19:52.810$ with other clinically relevant regimens for glioma,

 $511\ 00:19:52.810 \longrightarrow 00:19:54.280$ namely DIPG.

 $512\ 00:19:54.280 \longrightarrow 00:19:56.510$ And it turns out as many of you know in the audience here,

 $513\ 00:19:56.510$ --> 00:19:59.170 temozolomide is a main stay of brain tumor treatment.

 $514\ 00{:}19{:}59.170 \dashrightarrow 00{:}20{:}01.500$ And temozolomide itself actually has been shown

 $515~00{:}20{:}01.500$ --> $00{:}20{:}04.960$ to cause an NAD depletion by metabolic stress

 $516\ 00:20:04.960 \longrightarrow 00:20:06.940$ In parallel, what about things like radiation,

517~00:20:06.940 --> 00:20:10.000 another mainstay for DIPG and other gliomas?

518 00:20:10.000 --> 00:20:12.150 And I do apologize for I rat out colleagues I know

 $519\ 00:20:12.150 \longrightarrow 00:20:14.090$ to quote a paper from 1978.

 $520~00:20:14.090 \longrightarrow 00:20:16.836$ I promise I'm going to get a more recent one.

 $521~00{:}20{:}16.836 \dashrightarrow 00{:}20{:}18.210$ But it turns out that radiation actually depletes

 $522\ 00:20:18.210 \longrightarrow 00:20:19.460$ NAD levels as well.

523 00:20:19.460 --> 00:20:21.270 And so where am I going with this?

524 00:20:21.270 --> 00:20:23.010 We, we have now NAMPT inhibitors,

- $525\ 00:20:23.010 \longrightarrow 00:20:25.387$ possibly radiation temodar those are, that's like the,
- 526 00:20:25.387 --> 00:20:27.242 the stupe trial plus NAMPT inhibitor -
- $527~00{:}20{:}27.242 \dashrightarrow 00{:}20{:}30.410$ so an opportunity for what I would call trimodality
- $528\ 00:20:30.410 --> 00:20:31.770$ synergy with NAMPT inhibitors.
- 529~00:20:31.770 --> 00:20:34.200 So we're really excited about possibly incorporating
- $530\ 00:20:34.200 --> 00:20:37.070$ these modalities into a future clinical trial.
- $531\ 00:20:37.070 \longrightarrow 00:20:37.920$ So the last little point,
- 532 00:20:37.920 --> 00:20:39.500 again I just want to give you a flavor for this
- $533\ 00:20:39.500 \longrightarrow 00:20:40.333$ because of time.
- $534\ 00:20:40.333 \longrightarrow 00:20:41.560$ There's a lot more to it.
- 535 00:20:41.560 --> 00:20:43.780 What about CNS penetration?
- 536 00:20:43.780 --> 00:20:46.003 So, one thing we learn is that your drug is no,
- $537\ 00{:}20{:}46.003 \to 00{:}20{:}48.783$ no better than how well it can get into the blood,
- $538\ 00:20:48.783 \longrightarrow 00:20:51.520$ past the blood brain barrier for glioma trials.
- 539 00:20:51.520 --> 00:20:53.330 Turns out that most NAMPT inhibitors
- $540\ 00:20:53.330 \longrightarrow 00:20:55.070$ are CNS impermeable.
- $541\ 00:20:55.070 --> 00:20:57.210$ The ones that are permeable actually have
- $542\ 00:20:57.210 \longrightarrow 00:20:59.700$ that retina toxicity that I mentioned earlier.
- 543 00:20:59.700 --> 00:21:01.600 So this is a bit of a conundrum.
- $544~00{:}21{:}01.600 \dashrightarrow 00{:}21{:}03.580$ And so one thing that we're interested in looking at
- 545 00:21:03.580 --> 00:21:04.970 is Convection Enhanced Delivery.
- $546~00{:}21{:}04.970 \dashrightarrow 00{:}21{:}06.920$ Some of you may this, may know of this approach
- $547\ 00{:}21{:}06.920$ --> $00{:}21{:}09.980$ where you directly inject a drug into the brain stem
- $548~00:21:09.980 \dashrightarrow 00:21:12.670$ or into the brain to bypass the blood brain barrier.
- 549 00:21:12.670 --> 00:21:15.220 Folks like Joe Piepmeier and colleagues, uh, have p -

- $550\ 00:21:15.220 --> 00:21:16.970$ have done pioneering work in this field.
- 551 00:21:16.970 --> 00:21:18.610 And believe it or not, this is actually now,
- 552 00:21:18.610 --> 00:21:19.560 now quite common.
- $553\ 00{:}21{:}19.560 \dashrightarrow 00{:}21{:}22.880$ There's probably about 7 or 8 trials in kids and adults
- $554\ 00:21:22.880 \longrightarrow 00:21:25.520$ testing CED of novel agents.
- 555 00:21:25.520 --> 00:21:27.360 Uh, we would argue that this is a great idea,
- $556\ 00:21:27.360 \longrightarrow 00:21:29.880$ but we know within a few hours those drugs you inject,
- $557\ 00:21:29.880 \longrightarrow 00:21:31.210$ they wash right away.
- $558~00{:}21{:}31.210 \dashrightarrow 00{:}21{:}33.739~\mathrm{Um},$ and so if the way to encapsulate those drugs
- 559 00:21:33.739 --> 00:21:36.620 in some sort of particle, i.e. nano-particle,
- $560~00{:}21{:}36.620 \dashrightarrow 00{:}21{:}39.700$ we could then find a way to prolong, uh, the deliv-
- 561 00:21:39.700 --> 00:21:42.280 the drug delivery and exposure in the tumor.
- 562 00:21:42.280 --> 00:21:43.510 So who could we got to for that?
- $563~00{:}21{:}43.510 --> 00{:}21{:}45.090$ Well, of course we could go right across the street
- $564\ 00:21:45.090 \longrightarrow 00:21:45.923$ to Mark Saltzman.
- 565 00:21:45.923 --> 00:21:48.790 And Mark and Jianbing Zhou and folks have,
- $566\ 00:21:48.790 --> 00:21:50.110$ have really done pioneering work
- $567~00{:}21{:}50.110$ --> $00{:}21{:}53.732$ in developing brain penetrating PEG and related
- $568\ 00:21:53.732 --> 00:21:56.580$ nano-particles and have shown in
- $569\ 00:21:56.580 \longrightarrow 00:21:59.430$ some really seminal papers including this one in PNAS,
- 570~00:21:59.430 --> 00:22:02.410 that you could use them to treat gliomablastoma.
- 571~00:22:02.410 --> 00:22:03.958 So we've been working with Mark for quite some time.
- $572\ 00:22:03.958 --> 00:22:06.530$ So some of you know over the last couple years
- $573\ 00:22:06.530 \longrightarrow 00:22:08.910$ we've had a very, a long fruitful collaboration.
- $574\ 00:22:08.910 --> 00:22:10.660$ We've actually shown by proof of concept

- 575 00:22:10.660 --> 00:22:12.780 that we could take DNA repair inhibitors,
- 576 00:22:12.780 --> 00:22:15.190 like ATR inhibitors, uh, and encapsulate them
- $577\ 00{:}22{:}15.190 \dashrightarrow 00{:}22{:}17.430$ in nano-particles and use them to treat, gliomas.
- $578\ 00:22:17.430 \longrightarrow 00:22:20.620$ And this is just one of our papers that came out recently.
- $579~00{:}22{:}20.620 \dashrightarrow 00{:}22{:}22.360$ So that's actually exactly what we're doing now
- 580 00:22:22.360 --> 00:22:23.193 for NAMPT inhibitors.
- $581\ 00:22:23.193 --> 00:22:26.970$ And this is actually a YCC co-pilot grant
- $582\ 00:22:26.970 --> 00:22:29.280$ looking at whether we can capsulate NAMPT inhibitors
- $583\ 00:22:29.280 \longrightarrow 00:22:30.490$ in nano-particles.
- 584~00:22:30.490 --> 00:22:32.810 And this is work from Yazhe Wang and Jason Breckta,
- $585\ 00{:}22{:}32.810 \dashrightarrow 00{:}22{:}34.990$ radunct resident in my laboratory showing that
- $586\ 00:22:34.990 --> 00:22:37.680$ yes, we can and that these particles effectively can
- 587 00:22:37.680 --> 00:22:40.763 release drug and actually deplete NAD
- $588\ 00:22:40.763 \longrightarrow 00:22:42.520$ in this setting.
- $589~00:22:42.520 \dashrightarrow 00:22:44.860$ So just to wrap up here in the last 2 minutes.
- $590\ 00:22:44.860 --> 00:22:47.570$ So, we really are firm believers that
- 591 00:22:47.570 --> 00:22:49.180 metabolic vulnerabilities can be exploited
- 592 00:22:49.180 --> 00:22:50.790 in both adult and pediatric gliomas.
- 593 00:22:50.790 --> 00:22:52.550 We've shown this for IDH in the adults,
- $594\ 00:22:52.550 --> 00:22:54.810$ and now we're showing for PPM1D in the kids.
- 595 00:22:54.810 --> 00:22:57.317 We believe that just like IDH,
- $596~00:22:57.317 \dashrightarrow 00:23:00.173$ and we're trying to translate this into the clinic.
- $597\ 00:23:00.173 --> 00:23:03.940$ We're really falling up as fast as we can
- $598\ 00:23:03.940 --> 00:23:05.900$ to understand why PPM1D mutations
- $599\ 00:23:05.900 \longrightarrow 00:23:07.900$ are inducing NAPRT silencing.

- $600\ 00:23:07.900 --> 00:23:10.810$ And, we do believe that there's an opportunity
- $601~00{:}23{:}10.810 \dashrightarrow 00{:}23{:}13.900$ here to take existing treatments like radiation and temodar
- 602 00:23:13.900 --> 00:23:16.050 and bring in NAMPT inhibitors into the fray.
- 603 00:23:16.050 --> 00:23:18.270 And we're very actively exploring
- $604\ 00:23:18.270 --> 00:23:20.250$ whether CED and nano-particles may address
- $605\ 00{:}23{:}20.250$ --> $00{:}23{:}22.610$ some of the issues that I've talked about earlier.
- $606\ 00:23:22.610 \longrightarrow 00:23:24.130$ So with that I'll just wrap up.
- $607\ 00:23:24.130 --> 00:23:26.370$ I'll thank all the folks that did the work
- $608~00{:}23{:}26.370 \dashrightarrow 00{:}23{:}28.890$ in the laboratory, and all of them are shown here
- $609\ 00:23:28.890 \longrightarrow 00:23:30.280$ at our recent retreat.
- $610\ 00:23:30.280 \longrightarrow 00:23:31.160$ Nate has moved on.
- 611 00:23:31.160 --> 00:23:33.360 He's now our first, first grad student,
- $612\ 00:23:33.360 \longrightarrow 00:23:35.477$ and now a post-doc at the NCI.
- $613\ 00:23:35.477 --> 00:23:37.160$ And of course I'd like to thank the folks that
- $614\ 00:23:37.160 \longrightarrow 00:23:38.250$ fund this work as well.
- $615\ 00:23:38.250 \longrightarrow 00:23:39.288$ And we have time for a few questions.
- 616 00:23:39.288 --> 00:23:40.121 (applause)