WEBVTT

NOTE duration: "01:03:30.8800000"

NOTE recognizability:0.826

NOTE language:en-us

NOTE Confidence: 0.89328481

00:00:00.000 --> 00:00:00.768 Good morning everybody.

NOTE Confidence: 0.89328481

 $00{:}00{:}00{:}00{:}068 \dashrightarrow 00{:}00{:}02.560$ It's so nice to see every body here.

NOTE Confidence: 0.89328481

 $00:00:02.560 \longrightarrow 00:00:03.856$ So let's get started.

NOTE Confidence: 0.89328481

 $00:00:03.856 \longrightarrow 00:00:05.800$ So this is a special occasion

NOTE Confidence: 0.89328481

 $00:00:05.870 \longrightarrow 00:00:07.875$ and actually nobody better than

NOTE Confidence: 0.89328481

 $00{:}00{:}07.875 \dashrightarrow 00{:}00{:}09.880$ Doctor Armstrong to present the

NOTE Confidence: 0.89328481

00:00:09.880 --> 00:00:12.238 Lecturer in honour of Lance Tallman.

NOTE Confidence: 0.89328481

 $00{:}00{:}12.240 \dashrightarrow 00{:}00{:}14.540$ So this series was established

NOTE Confidence: 0.89328481

 $00:00:14.540 \longrightarrow 00:00:17.320$ in 2012 by Doctor Marvin Sears.

NOTE Confidence: 0.89328481

 $00{:}00{:}17.320 \dashrightarrow 00{:}00{:}19.231$ Dr. Sears was a long time chair

NOTE Confidence: 0.89328481

 $00{:}00{:}19.231 \dashrightarrow 00{:}00{:}20.890$ and founder of the Ophthalmology

NOTE Confidence: 0.89328481

 $00:00:20.890 \longrightarrow 00:00:22.840$ and Visual Sciences at Yale,

NOTE Confidence: 0.89328481

 $00:00:22.840 \longrightarrow 00:00:24.465$ and he established this lecture

00:00:24.465 --> 00:00:26.560 series series in honour of his mother,

NOTE Confidence: 0.89328481

00:00:26.560 --> 00:00:27.120 Lance Tallman,

NOTE Confidence: 0.89328481

 $00:00:27.120 \longrightarrow 00:00:29.240$ who passed away from leukemia.

NOTE Confidence: 0.89328481

 $00:00:29.240 \longrightarrow 00:00:31.320$ And it really was the first lecture series

NOTE Confidence: 0.89328481

 $00:00:31.320 \longrightarrow 00:00:33.118$ dedicated solely to hematologic malignancies.

NOTE Confidence: 0.89328481

 $00:00:33.120 \longrightarrow 00:00:35.136$ So hematologists are always

NOTE Confidence: 0.89328481

 $00{:}00{:}35.136 \dashrightarrow 00{:}00{:}37.272$ delighted and it's really intended

NOTE Confidence: 0.89328481

 $00:00:37.272 \longrightarrow 00:00:39.312$ to bring to Yale pioneers,

NOTE Confidence: 0.89328481

 $00:00:39.320 \longrightarrow 00:00:40.272$ you know,

NOTE Confidence: 0.89328481

 $00:00:40.272 \longrightarrow 00:00:42.652$ who study malignant hematologic diseases

NOTE Confidence: 0.89328481

 $00:00:42.652 \longrightarrow 00:00:45.560$ and then bring treatments to the patient.

NOTE Confidence: 0.89328481

 $00:00:45.560 \longrightarrow 00:00:48.244$ There's actually nobody better than to give

NOTE Confidence: 0.89328481

 $00:00:48.244 \longrightarrow 00:00:50.638$ today's lecture than Doctor Scott Armstrong.

NOTE Confidence: 0.89328481

 $00:00:50.640 \longrightarrow 00:00:52.140$ Doctor Armstrong is the

NOTE Confidence: 0.89328481

00:00:52.140 --> 00:00:53.640 President of Dana Farber,

NOTE Confidence: 0.89328481

 $00{:}00{:}53.640 \dashrightarrow 00{:}00{:}56.325$ Boston Children's Cancer and Blood

00:00:56.325 --> 00:00:58.692 Disorder Center and the Chairman of

NOTE Confidence: 0.89328481

 $00{:}00{:}58.692 \to 00{:}01{:}00.307$ the Department of Pediatric Oncology

NOTE Confidence: 0.89328481

 $00:01:00.307 \longrightarrow 00:01:02.278$ at Dana Farben Cancer Institute.

NOTE Confidence: 0.89328481

00:01:02.280 --> 00:01:04.920 And since 2016,

NOTE Confidence: 0.89328481

 $00:01:04.920 \longrightarrow 00:01:07.048$ he serves as the Associate Chief of

NOTE Confidence: 0.89328481

00:01:07.048 --> 00:01:08.960 the Division of Hematology Oncology

NOTE Confidence: 0.89328481

00:01:08.960 --> 00:01:11.307 at Boston Children's Hospital and

NOTE Confidence: 0.89328481

 $00{:}01{:}11.307 \dashrightarrow 00{:}01{:}13.389$ was previously the Director of the

NOTE Confidence: 0.89328481

00:01:13.389 --> 00:01:15.295 Center for Abidinex Research at

NOTE Confidence: 0.89328481

00:01:15.295 --> 00:01:16.899 Memorial Sloan Kettering Cancer

NOTE Confidence: 0.89328481

 $00:01:16.899 \longrightarrow 00:01:19.004$ Center and Professor of Pediatrics

NOTE Confidence: 0.89328481

 $00{:}01{:}19.004 \dashrightarrow 00{:}01{:}21.199$ at Weill Cornell Medical College.

NOTE Confidence: 0.89328481

00:01:21.200 --> 00:01:22.908 I'm not going to go back to

NOTE Confidence: 0.89328481

00:01:22.908 --> 00:01:24.159 medical degrees and all this,

NOTE Confidence: 0.89328481

 $00:01:24.160 \longrightarrow 00:01:25.198$ so good to have you here.

 $00:01:25.200 \longrightarrow 00:01:28.353$ So Roger Armstrong really has you know

NOTE Confidence: 0.89328481

 $00{:}01{:}28.353 \dashrightarrow 00{:}01{:}32.518$ pioneered research in in epigenetics

NOTE Confidence: 0.89328481

00:01:32.520 --> 00:01:34.184 and studying pediatric cancers,

NOTE Confidence: 0.89328481

 $00{:}01{:}34.184 --> 00{:}01{:}34.600 \ \mathrm{right}.$

NOTE Confidence: 0.89328481

00:01:34.600 --> 00:01:36.646 And we always learn that studying

NOTE Confidence: 0.89328481

00:01:36.646 --> 00:01:38.914 cancer for example in Pediatrics can

NOTE Confidence: 0.89328481

 $00{:}01{:}38.914 \dashrightarrow 00{:}01{:}40.598$ then really enlightened mechanism

NOTE Confidence: 0.89328481

 $00{:}01{:}40.598 \dashrightarrow 00{:}01{:}43.280$ of disease also for a dult patients.

NOTE Confidence: 0.89328481

00:01:43.280 --> 00:01:44.400 And I think it's super,

NOTE Confidence: 0.89328481

00:01:44.400 --> 00:01:46.338 super exciting to hear your talk

NOTE Confidence: 0.89328481

 $00:01:46.338 \longrightarrow 00:01:47.945$ today really bringing basic mechanism

NOTE Confidence: 0.89328481

 $00:01:47.945 \longrightarrow 00:01:50.009$ all the way from the lab to benefit

NOTE Confidence: 0.89328481

00:01:50.009 --> 00:01:52.170 so many of our patients and we're

NOTE Confidence: 0.89328481

 $00:01:52.170 \longrightarrow 00:01:53.720$ incredibly excited to have you here.

NOTE Confidence: 0.843636681764706

 $00:02:00.520 \longrightarrow 00:02:02.380$ Thank you for the nice introduction

NOTE Confidence: 0.843636681764706

 $00:02:02.380 \longrightarrow 00:02:04.447$ and for the lectureship and

 $00:02:04.447 \longrightarrow 00:02:06.357$ the plaque that's very nice.

NOTE Confidence: 0.843636681764706

 $00:02:06.360 \longrightarrow 00:02:07.716$ And thank you for coming today.

NOTE Confidence: 0.843636681764706

 $00:02:07.720 \longrightarrow 00:02:08.850$ It's not the most beautiful

NOTE Confidence: 0.843636681764706

 $00:02:08.850 \longrightarrow 00:02:10.360$ day to be out walking around.

NOTE Confidence: 0.843636681764706

 $00:02:10.360 \longrightarrow 00:02:13.120$ So I appreciate you you making it here.

NOTE Confidence: 0.843636681764706

00:02:13.120 --> 00:02:14.652 And as Stephanie said,

NOTE Confidence: 0.843636681764706

00:02:14.652 --> 00:02:17.467 I'm going to talk to you today

NOTE Confidence: 0.843636681764706

 $00{:}02{:}17.467 \dashrightarrow 00{:}02{:}20.023$ about work we've been doing over

NOTE Confidence: 0.843636681764706

 $00:02:20.023 \longrightarrow 00:02:23.332$ the past couple of decades now

NOTE Confidence: 0.843636681764706

 $00:02:23.332 \longrightarrow 00:02:25.838$ focused on originally a relatively

NOTE Confidence: 0.843636681764706

00:02:25.838 --> 00:02:28.394 rare subset of leukemia and then

NOTE Confidence: 0.843636681764706

 $00:02:28.394 \longrightarrow 00:02:30.663$ move to more common leukemias

NOTE Confidence: 0.843636681764706

 $00{:}02{:}30.663 \dashrightarrow 00{:}02{:}32.873$ and maybe even beyond leukemias.

NOTE Confidence: 0.843636681764706

 $00{:}02{:}32.880 \dashrightarrow 00{:}02{:}34.994$ And as many of you probably know

NOTE Confidence: 0.843636681764706

 $00:02:34.994 \longrightarrow 00:02:36.811$ that the concept of targeting

00:02:36.811 --> 00:02:38.511 chromatin or epigenetic based

NOTE Confidence: 0.843636681764706

00:02:38.511 --> 00:02:40.584 mechanisms been around for quite

NOTE Confidence: 0.843636681764706

 $00:02:40.584 \longrightarrow 00:02:42.600$ some time and there have been some

NOTE Confidence: 0.843636681764706

 $00:02:42.600 \longrightarrow 00:02:44.000$ therapeutic advances in that regard.

NOTE Confidence: 0.843636681764706

 $00:02:44.000 \longrightarrow 00:02:45.746$ But it's been it's stops and

NOTE Confidence: 0.843636681764706

00:02:45.746 --> 00:02:47.946 starts I would say along the road

NOTE Confidence: 0.843636681764706

 $00:02:47.946 \dashrightarrow 00:02:49.878$ and hopefully I can convince you

NOTE Confidence: 0.843636681764706

00:02:49.878 --> 00:02:51.914 that we're maybe finally starting

NOTE Confidence: 0.843636681764706

 $00:02:51.914 \longrightarrow 00:02:54.332$ to make some significant go get

NOTE Confidence: 0.843636681764706

 $00:02:54.332 \longrightarrow 00:02:55.876$ some significant insights there.

NOTE Confidence: 0.843636681764706

 $00:02:55.880 \longrightarrow 00:02:57.000$ So these are my disclosures.

NOTE Confidence: 0.843636681764706

 $00:02:57.000 \longrightarrow 00:02:59.120$ I do consult for a number of biotech

NOTE Confidence: 0.843636681764706

 $00:02:59.120 \longrightarrow 00:03:00.988$ companies trying to convince them that

NOTE Confidence: 0.843636681764706

 $00:03:00.988 \longrightarrow 00:03:02.598$ these mechanisms are relevant that's

NOTE Confidence: 0.843636681764706

 $00:03:02.600 \longrightarrow 00:03:05.316$ and sometimes I'm able to do that.

NOTE Confidence: 0.843636681764706

 $00:03:05.320 \longrightarrow 00:03:07.560$ And then this patent on amended inhibition,

 $00:03:07.560 \longrightarrow 00:03:08.475$ NPM one AML.

NOTE Confidence: 0.843636681764706

00:03:08.475 --> 00:03:10.960 I'm going to talk about NPM one AML.

NOTE Confidence: 0.843636681764706

 $00{:}03{:}10.960 \dashrightarrow 00{:}03{:}12.466$ And more important disclosure is these

NOTE Confidence: 0.843636681764706

 $00:03:12.466 \longrightarrow 00:03:14.038$ are the people that do the work.

NOTE Confidence: 0.843636681764706

00:03:14.040 --> 00:03:17.028 I don't do the work and I'm very lucky

NOTE Confidence: 0.843636681764706

 $00{:}03{:}17.028 \dashrightarrow 00{:}03{:}19.520$ to have tremendous fellows in the lab.

NOTE Confidence: 0.843636681764706

 $00:03:19.520 \longrightarrow 00:03:21.879$ And actually all of these fellows other

NOTE Confidence: 0.843636681764706

00:03:21.879 --> 00:03:24.027 than Emily who soon will leave the

NOTE Confidence: 0.843636681764706

00:03:24.027 --> 00:03:26.554 lab to go start her own have started

NOTE Confidence: 0.843636681764706

 $00:03:26.554 \longrightarrow 00:03:29.753$ their own independent lab based careers now.

NOTE Confidence: 0.843636681764706

 $00:03:29.760 \longrightarrow 00:03:31.426$ So this is the outline of the

NOTE Confidence: 0.843636681764706

 $00:03:31.426 \longrightarrow 00:03:33.120$ talk I'm going to introduce you.

NOTE Confidence: 0.843636681764706

 $00{:}03{:}33.120 \dashrightarrow 00{:}03{:}36.640$ Many of you probably know a lot of

NOTE Confidence: 0.843636681764706

 $00{:}03{:}36.640 \dashrightarrow 00{:}03{:}40.665$ this to the MLL or CAT or MLL or KMT

NOTE Confidence: 0.843636681764706

00:03:40.665 --> 00:03:43.507 two ACI can't even remember what the

00:03:43.507 --> 00:03:46.984 other name is for complex and MLL

NOTE Confidence: 0.843636681764706

 $00:03:46.984 \longrightarrow 00:03:49.736$ rearranged leukemias and then move to

NOTE Confidence: 0.843636681764706

 $00:03:49.736 \longrightarrow 00:03:51.556$ the therapeutic development of small

NOTE Confidence: 0.843636681764706

 $00:03:51.556 \longrightarrow 00:03:53.597$ molecules that target those complexes.

NOTE Confidence: 0.843636681764706

 $00{:}03{:}53.600 \dashrightarrow 00{:}03{:}56.001$ Talk a little bit about the clinical

NOTE Confidence: 0.843636681764706

 $00:03:56.001 \longrightarrow 00:03:57.421$ translation and resistance mechanisms

NOTE Confidence: 0.843636681764706

 $00:03:57.421 \longrightarrow 00:03:59.710$ that we're starting to see to those

NOTE Confidence: 0.843636681764706

 $00{:}03{:}59.710 \dashrightarrow 00{:}04{:}01.660$ molecules and then talk about the

NOTE Confidence: 0.843636681764706

 $00{:}04{:}01.660 \dashrightarrow 00{:}04{:}03.291$ potential role in other cancers.

NOTE Confidence: 0.843636681764706

 $00:04:03.291 \longrightarrow 00:04:05.313$ And as I already mentioned the,

NOTE Confidence: 0.843636681764706

 $00{:}04{:}05.320 \dashrightarrow 00{:}04{:}08.116$ the concept of the OR the

NOTE Confidence: 0.843636681764706

 $00:04:08.116 \longrightarrow 00:04:09.514$ relevance of epigenetics.

NOTE Confidence: 0.843636681764706

 $00:04:09.520 \longrightarrow 00:04:11.424$ And just for those of you that

NOTE Confidence: 0.843636681764706

 $00{:}04{:}11.424 \dashrightarrow 00{:}04{:}13.095$ are that are purists in the

NOTE Confidence: 0.843636681764706

00:04:13.095 --> 00:04:14.235 epigenetic and chromatin space,

NOTE Confidence: 0.843636681764706

 $00{:}04{:}14.240 \dashrightarrow 00{:}04{:}15.860$ I will interchangeably use

00:04:15.860 --> 00:04:17.480 epigenetic and chromatin biology.

NOTE Confidence: 0.843636681764706

 $00:04:17.480 \longrightarrow 00:04:19.601$ Actually there there is a group of

NOTE Confidence: 0.843636681764706

00:04:19.601 --> 00:04:21.704 people that think those two things are

NOTE Confidence: 0.843636681764706

 $00:04:21.704 \longrightarrow 00:04:23.848$ not the same thing and the concept

NOTE Confidence: 0.843636681764706

 $00:04:23.848 \longrightarrow 00:04:25.864$ that these mechanisms are relevant and

NOTE Confidence: 0.843636681764706

 $00:04:25.864 \longrightarrow 00:04:28.237$ cancer has been around for quite some time.

NOTE Confidence: 0.843636681764706

00:04:28.240 --> 00:04:31.476 This is not a new idea and epigenetics

NOTE Confidence: 0.843636681764706

 $00{:}04{:}31.476 \dashrightarrow 00{:}04{:}33.468$ really encompasses many different

NOTE Confidence: 0.843636681764706

 $00:04:33.468 \longrightarrow 00:04:36.200$ types of modifications of chromatin,

NOTE Confidence: 0.843636681764706

00:04:36.200 --> 00:04:37.320 DNA methylation,

NOTE Confidence: 0.843636681764706

00:04:37.320 --> 00:04:38.440 histone modifications,

NOTE Confidence: 0.843636681764706

 $00:04:38.440 \longrightarrow 00:04:40.680$ complexes have proteins that

NOTE Confidence: 0.843636681764706

 $00{:}04{:}40.680 \dashrightarrow 00{:}04{:}43.440$ read those histone modifications.

NOTE Confidence: 0.843636681764706

 $00:04:43.440 \longrightarrow 00:04:44.086$ The nucleos,

NOTE Confidence: 0.843636681764706

 $00:04:44.086 \longrightarrow 00:04:45.378$ there's nucleosome remodeling complexes

 $00:04:45.378 \longrightarrow 00:04:46.960$ that you've probably heard about.

NOTE Confidence: 0.843636681764706

 $00:04:46.960 \longrightarrow 00:04:48.800$ The bath complex also are

NOTE Confidence: 0.843636681764706

 $00:04:48.800 \longrightarrow 00:04:50.272$ frequently mutated in cancer.

NOTE Confidence: 0.843636681764706

 $00:04:50.280 \longrightarrow 00:04:52.317$ So we've known that this is relevant,

NOTE Confidence: 0.843636681764706

 $00:04:52.320 \longrightarrow 00:04:54.352$ but what to do about it has been

NOTE Confidence: 0.843636681764706

 $00:04:54.352 \longrightarrow 00:04:56.192$ a little bit harder to understand

NOTE Confidence: 0.843636681764706

 $00:04:56.192 \longrightarrow 00:04:58.088$ and the kind of simple

NOTE Confidence: 0.846459086818182

 $00:04:58.157 \longrightarrow 00:05:00.064$ concept is, is these mechanisms

NOTE Confidence: 0.846459086818182

 $00:05:00.064 \longrightarrow 00:05:01.696$ control developmental gene expression

NOTE Confidence: 0.846459086818182

00:05:01.696 --> 00:05:04.524 and if we were smart enough we'd

NOTE Confidence: 0.846459086818182

 $00:05:04.524 \longrightarrow 00:05:06.444$ figure out how to the apeutically

NOTE Confidence: 0.846459086818182

 $00:05:06.444 \longrightarrow 00:05:08.962$ target them and reverse those cancer

NOTE Confidence: 0.846459086818182

 $00:05:08.962 \longrightarrow 00:05:11.032$ causing gene expression mechanisms and

NOTE Confidence: 0.846459086818182

 $00:05:11.040 \longrightarrow 00:05:12.756$ hopefully we're starting to get there.

NOTE Confidence: 0.846459086818182

 $00:05:12.760 \longrightarrow 00:05:15.245$ There are some FDA approved drugs that

NOTE Confidence: 0.846459086818182

 $00:05:15.245 \longrightarrow 00:05:17.714$ you probably know about H TAC inhibitors

 $00:05:17.714 \longrightarrow 00:05:19.454$ and DNA methyl transferase inhibitors.

NOTE Confidence: 0.846459086818182

 $00:05:19.454 \longrightarrow 00:05:22.390$ I would say whether or not those molecules

NOTE Confidence: 0.846459086818182

00:05:22.446 --> 00:05:24.556 are working via epigenetic mechanisms,

NOTE Confidence: 0.846459086818182

 $00:05:24.560 \longrightarrow 00:05:26.478$ still a little bit of a question,

NOTE Confidence: 0.846459086818182

 $00:05:26.480 \longrightarrow 00:05:29.035$ but indeed those were the first ones

NOTE Confidence: 0.846459086818182

 $00:05:29.035 \longrightarrow 00:05:31.801$ that could be working via these some of

NOTE Confidence: 0.846459086818182

 $00:05:31.801 \longrightarrow 00:05:34.000$ these mechanisms that were FDA approved.

NOTE Confidence: 0.846459086818182

 $00:05:34.000 \longrightarrow 00:05:36.856$ So this is the leukemia that I became

NOTE Confidence: 0.846459086818182

00:05:36.856 --> 00:05:38.775 most interested in as a fellow

NOTE Confidence: 0.846459086818182

 $00:05:38.775 \longrightarrow 00:05:40.195$ back in the late 1990s.

NOTE Confidence: 0.846459086818182

 $00:05:40.200 \longrightarrow 00:05:42.500$ Now those are leukemias with

NOTE Confidence: 0.846459086818182

 $00:05:42.500 \longrightarrow 00:05:45.632$ rearrangements of the KMT 2A or

NOTE Confidence: 0.846459086818182

 $00{:}05{:}45.632 \dashrightarrow 00{:}05{:}49.260$ or MLL gene and in Pediatrics as

NOTE Confidence: 0.846459086818182

 $00:05:49.260 \longrightarrow 00:05:51.720$ mentioned I'm a pediatric oncologist.

NOTE Confidence: 0.846459086818182

 $00:05:51.720 \longrightarrow 00:05:53.455$ This rearrangement when found in

 $00:05:53.455 \longrightarrow 00:05:56.044$ infants with AOL predicts a very poor

NOTE Confidence: 0.846459086818182

 $00:05:56.044 \longrightarrow 00:05:58.014$ prognosis and in pediatric leukemia

NOTE Confidence: 0.846459086818182

 $00:05:58.014 \longrightarrow 00:06:00.239$ therapy we're actually not used to that.

NOTE Confidence: 0.846459086818182

 $00:06:00.240 \longrightarrow 00:06:02.193$ We cure most of our patients with

NOTE Confidence: 0.846459086818182

 $00{:}06{:}02.193 \dashrightarrow 00{:}06{:}04.711$ AOL and we find a subset that has a

NOTE Confidence: 0.846459086818182

 $00:06:04.711 \longrightarrow 00:06:06.690$ less than 40% long term survival.

NOTE Confidence: 0.846459086818182

 $00{:}06{:}06.690 \dashrightarrow 00{:}06{:}09.030$ We that's unusual and this subset

NOTE Confidence: 0.846459086818182

 $00:06:09.030 \longrightarrow 00:06:11.585$ is that if an infant comes in that

NOTE Confidence: 0.846459086818182

00:06:11.585 --> 00:06:14.061 has ALL and has a rearrangement of

NOTE Confidence: 0.846459086818182

 $00:06:14.061 \longrightarrow 00:06:16.317$ this gene that it's probably in

NOTE Confidence: 0.846459086818182

00:06:16.320 --> 00:06:19.278 the 4050% long term survival now.

NOTE Confidence: 0.743930284666667

 $00:06:23.160 \longrightarrow 00:06:25.680$ And so back in the late 90s I joined

NOTE Confidence: 0.743930284666667

 $00{:}06{:}25.680 \dashrightarrow 00{:}06{:}28.198$ Stan course Meyer's lab to start to

NOTE Confidence: 0.743930284666667

 $00:06:28.198 \longrightarrow 00:06:30.106$ learn about that and then obviously

NOTE Confidence: 0.743930284666667

 $00:06:30.106 \longrightarrow 00:06:31.720$ ultimately to start my own lab.

NOTE Confidence: 0.743930284666667

 $00:06:31.720 \longrightarrow 00:06:34.114$ So this is the the wild

 $00:06:34.114 \longrightarrow 00:06:36.718$ type MLL or KMT 2A protein.

NOTE Confidence: 0.743930284666667

 $00:06:36.720 \longrightarrow 00:06:39.359$ It's very large, it's in the nucleus,

NOTE Confidence: 0.743930284666667

 $00:06:39.360 \longrightarrow 00:06:40.944$ it's about 500K Daltons,

NOTE Confidence: 0.743930284666667

00:06:40.944 --> 00:06:44.040 makes it has made it difficult to study.

NOTE Confidence: 0.743930284666667

 $00:06:44.040 \longrightarrow 00:06:45.774$ It has a number of different

NOTE Confidence: 0.743930284666667

 $00:06:45.774 \longrightarrow 00:06:47.760$ domains and is bound to chromatin.

NOTE Confidence: 0.743930284666667

 $00:06:47.760 \longrightarrow 00:06:50.000$ We've known that for over 20 years.

NOTE Confidence: 0.743930284666667

 $00:06:50.000 \longrightarrow 00:06:51.962$ And when the translocation occurs that

NOTE Confidence: 0.743930284666667

 $00{:}06{:}51.962 \dashrightarrow 00{:}06{:}54.483$ in terminus of MLL is fused to the

NOTE Confidence: 0.743930284666667

 $00{:}06{:}54.483 \dashrightarrow 00{:}06{:}56.205$ C terminus of what's 100 different

NOTE Confidence: 0.743930284666667

00:06:56.268 --> 00:06:58.578 fusion proteins also making a little

NOTE Confidence: 0.743930284666667

 $00:06:58.578 \longrightarrow 00:07:00.118$ bit complicated to understand.

NOTE Confidence: 0.743930284666667

 $00{:}07{:}00.120 \dashrightarrow 00{:}07{:}01.891$ And this is just the history that

NOTE Confidence: 0.743930284666667

00:07:01.891 --> 00:07:03.832 I won't go through in too much

NOTE Confidence: 0.743930284666667

 $00:07:03.832 \longrightarrow 00:07:05.827$ detail other than to say that the

 $00:07:05.827 \dashrightarrow 00:07:07.692$ wild type MLL protein is was shown

NOTE Confidence: 0.743930284666667

 $00:07:07.692 \longrightarrow 00:07:09.920$ in the mid 90s by Stan Course,

NOTE Confidence: 0.743930284666667

 $00:07:09.920 \longrightarrow 00:07:12.542$ Mars Group and others to control

NOTE Confidence: 0.743930284666667

00:07:12.542 --> 00:07:14.952 development of blood system of

NOTE Confidence: 0.743930284666667

 $00:07:14.952 \longrightarrow 00:07:16.451$ hematopolysis through presumably

NOTE Confidence: 0.743930284666667

 $00:07:16.451 \longrightarrow 00:07:18.437$ control of the homeotic or hox

NOTE Confidence: 0.743930284666667

00:07:18.437 --> 00:07:20.472 genes that are important in many

NOTE Confidence: 0.743930284666667

 $00{:}07{:}20.472 \dashrightarrow 00{:}07{:}22.097$ types of development and but

NOTE Confidence: 0.743930284666667

 $00{:}07{:}22.097 \dashrightarrow 00{:}07{:}24.000$ in blood development as well.

NOTE Confidence: 0.743930284666667

 $00:07:24.000 \longrightarrow 00:07:26.440$ And that was really actually

NOTE Confidence: 0.743930284666667

 $00:07:26.440 \longrightarrow 00:07:28.456$ pointed to that concept by studies

NOTE Confidence: 0.743930284666667

 $00:07:28.456 \longrightarrow 00:07:30.280$ done even before that in fly,

NOTE Confidence: 0.743930284666667

 $00:07:30.280 \longrightarrow 00:07:32.000$ in fruit flies and Drosophila,

NOTE Confidence: 0.743930284666667

 $00:07:32.000 \longrightarrow 00:07:33.480$ showing that the trithorax gene,

NOTE Confidence: 0.743930284666667

 $00:07:33.480 \longrightarrow 00:07:35.760$ which is the Drosophila homologue is

NOTE Confidence: 0.743930284666667

 $00:07:35.760 \longrightarrow 00:07:37.640$ important for development as well.

00:07:37.640 --> 00:07:39.596 And then Mike Cleary and Terry,

NOTE Confidence: 0.743930284666667

 $00:07:39.600 \longrightarrow 00:07:41.754$ rabbits showed in very nice mouse

NOTE Confidence: 0.743930284666667

 $00:07:41.754 \longrightarrow 00:07:44.051$ studies in the late 90s that

NOTE Confidence: 0.743930284666667

00:07:44.051 --> 00:07:46.016 the MLL fusion proteins indeed

NOTE Confidence: 0.743930284666667

00:07:46.016 --> 00:07:47.880 do directly induce leukemia.

NOTE Confidence: 0.743930284666667

00:07:47.880 --> 00:07:49.710 And then David Alice's group showed

NOTE Confidence: 0.743930284666667

 $00:07:49.710 \longrightarrow 00:07:52.689$ that in the wild type MLL is a histone

NOTE Confidence: 0.743930284666667

 $00:07:52.689 \longrightarrow 00:07:54.389$ modifying enzyme modifies histone H3

NOTE Confidence: 0.743930284666667

 $00{:}07{:}54.451 \dashrightarrow 00{:}07{:}56.311$ on lysine 4 through this enzymatic

NOTE Confidence: 0.743930284666667

 $00{:}07{:}56.311 \dashrightarrow 00{:}07{:}58.508$ domain here at the C terminus.

NOTE Confidence: 0.743930284666667

 $00:07:58.508 \longrightarrow 00:08:01.826$ So this was really the first well

NOTE Confidence: 0.743930284666667

 $00{:}08{:}01.826 \dashrightarrow 00{:}08{:}03.397$ characterized chromatin regulator

NOTE Confidence: 0.743930284666667

 $00{:}08{:}03.397 \dashrightarrow 00{:}08{:}06.953$ that is known to drive tumor genesis.

NOTE Confidence: 0.743930284666667

 $00:08:06.960 \longrightarrow 00:08:09.520$ And so that was really why in the

NOTE Confidence: 0.743930284666667

 $00:08:09.520 \longrightarrow 00:08:11.556$ early early 2000s a lot of labs

00:08:11.556 --> 00:08:13.581 jumped on this to thinking maybe

NOTE Confidence: 0.743930284666667

00:08:13.581 --> 00:08:16.423 this would give us some insight into

NOTE Confidence: 0.743930284666667

 $00:08:16.423 \longrightarrow 00:08:18.760$ chromatin based mechanisms and cancer.

NOTE Confidence: 0.743930284666667

 $00:08:18.760 \longrightarrow 00:08:21.096$ So to summarize a lot of work that

NOTE Confidence: 0.743930284666667

 $00:08:21.096 \longrightarrow 00:08:22.812$ we did talk thinking about cells

NOTE Confidence: 0.743930284666667

 $00:08:22.812 \longrightarrow 00:08:24.876$ of origin of of this type and

NOTE Confidence: 0.743930284666667

 $00:08:24.876 \longrightarrow 00:08:26.116$ other types of leukemia.

NOTE Confidence: 0.743930284666667

00:08:26.120 --> 00:08:27.457 Not going to get into that too

NOTE Confidence: 0.743930284666667

 $00{:}08{:}27.457 {\:{\circ}{\circ}{\circ}}>00{:}08{:}28.630$ much today because I want to

NOTE Confidence: 0.743930284666667

 $00:08:28.630 \longrightarrow 00:08:29.555$ get to the therapeutic part.

NOTE Confidence: 0.743930284666667

 $00{:}08{:}29.560 \dashrightarrow 00{:}08{:}31.336$ But we were able to show that the

NOTE Confidence: 0.743930284666667

 $00:08:31.336 \longrightarrow 00:08:33.374$ MLO fusion when we put it into either

NOTE Confidence: 0.743930284666667

 $00:08:33.374 \longrightarrow 00:08:34.760$ stem cells or progenitor cells,

NOTE Confidence: 0.743930284666667

 $00:08:34.760 \longrightarrow 00:08:35.944$ either mouse or human,

NOTE Confidence: 0.743930284666667

 $00:08:35.944 \longrightarrow 00:08:37.720$ that the MLO fusion can drive

NOTE Confidence: 0.743930284666667

 $00{:}08{:}37.786 \dashrightarrow 00{:}08{:}39.641$ the development of leukemia from

00:08:39.641 --> 00:08:41.125 multiple different cell types

NOTE Confidence: 0.743930284666667

00:08:41.125 --> 00:08:43.039 in hematopoietic development.

NOTE Confidence: 0.743930284666667

 $00:08:43.040 \longrightarrow 00:08:44.528$ And these concepts have now been

NOTE Confidence: 0.743930284666667

 $00:08:44.528 \longrightarrow 00:08:46.039$ shown in other types of tumors.

NOTE Confidence: 0.743930284666667

 $00:08:46.040 \longrightarrow 00:08:48.028$ But at the time that was a

NOTE Confidence: 0.743930284666667

 $00:08:48.028 \longrightarrow 00:08:48.880$ relatively new concept.

NOTE Confidence: 0.743930284666667

 $00:08:48.880 \longrightarrow 00:08:50.494$ But what more importantly what it

NOTE Confidence: 0.743930284666667

 $00{:}08{:}50.494 \dashrightarrow 00{:}08{:}52.445$ let us do is really characterize

NOTE Confidence: 0.743930284666667

00:08:52.445 --> 00:08:54.465 the gene expression program that's

NOTE Confidence: 0.743930284666667

 $00{:}08{:}54.465 \dashrightarrow 00{:}08{:}56.549$ driven by this MLL fusion protein

NOTE Confidence: 0.743930284666667

 $00:08:56.549 \longrightarrow 00:08:58.832$ when we put it into in this case

NOTE Confidence: 0.743930284666667

00:08:58.832 --> 00:09:00.400 a mouse progenitor cell.

NOTE Confidence: 0.743930284666667

 $00{:}09{:}00.400 \dashrightarrow 00{:}09{:}02.430$ And we could look very quickly to

NOTE Confidence: 0.743930284666667

 $00:09:02.430 \longrightarrow 00:09:04.915$ see what types of gene expression and

NOTE Confidence: 0.743930284666667

 $00:09:04.915 \longrightarrow 00:09:06.850$ chromatin based changes happened when

 $00:09:06.850 \longrightarrow 00:09:09.118$ the MLL fusion binds to chromatin.

NOTE Confidence: 0.743930284666667

 $00:09:09.120 \longrightarrow 00:09:11.200$ And our work and many,

NOTE Confidence: 0.743930284666667

 $00:09:11.200 \longrightarrow 00:09:12.805$ many people's work across the

NOTE Confidence: 0.743930284666667

 $00:09:12.805 \longrightarrow 00:09:14.410$ the world with this model

NOTE Confidence: 0.842150046666667

 $00:09:14.474 \longrightarrow 00:09:16.224$ originally developed by Mike Cleary's

NOTE Confidence: 0.842150046666667

00:09:16.224 --> 00:09:18.648 group have I would say that MLO

NOTE Confidence: 0.842150046666667

 $00{:}09{:}18.648 \dashrightarrow 00{:}09{:}20.472$ fusion driven leukemia now is about

NOTE Confidence: 0.842150046666667

 $00:09:20.472 \longrightarrow 00:09:21.940$ as well characterized mechanistically

NOTE Confidence: 0.842150046666667

 $00:09:21.940 \longrightarrow 00:09:24.520$ this as any type of leukemia,

NOTE Confidence: 0.842150046666667

 $00:09:24.520 \longrightarrow 00:09:26.545$ probably any type of cancer

NOTE Confidence: 0.842150046666667

00:09:26.545 --> 00:09:28.404 largely because of this model.

NOTE Confidence: 0.842150046666667

 $00:09:28.404 \longrightarrow 00:09:31.206$ So we know where the fusion binds throughout

NOTE Confidence: 0.842150046666667

 $00:09:31.206 \longrightarrow 00:09:33.036$ chromatin, which genes it controls.

NOTE Confidence: 0.842150046666667

 $00:09:33.040 \longrightarrow 00:09:34.832$ We now have mechanisms of turning the fusion

NOTE Confidence: 0.842150046666667

 $00:09:34.832 \longrightarrow 00:09:36.833$ off and we can see what genes get shut off.

NOTE Confidence: 0.842150046666667

 $00{:}09{:}36.840 \dashrightarrow 00{:}09{:}39.078$ We understand now quite a bit

 $00:09:39.080 \longrightarrow 00:09:42.080$ about what the MLL fusion does.

NOTE Confidence: 0.842150046666667

 $00:09:42.080 \longrightarrow 00:09:44.048$ Exactly how it does it is

NOTE Confidence: 0.842150046666667

 $00:09:44.048 \longrightarrow 00:09:45.693$ still a little bit unclear,

NOTE Confidence: 0.842150046666667

 $00:09:45.693 \longrightarrow 00:09:48.024$ but that is what we and others

NOTE Confidence: 0.842150046666667

 $00:09:48.024 \longrightarrow 00:09:49.759$ are really working on now.

NOTE Confidence: 0.842150046666667

 $00:09:49.760 \longrightarrow 00:09:51.370$ And of course that is what we

NOTE Confidence: 0.842150046666667

 $00:09:51.370 \longrightarrow 00:09:53.456$ need to know and under in order

NOTE Confidence: 0.842150046666667

 $00:09:53.456 \longrightarrow 00:09:54.792$ to develop hopefully therapeutics

NOTE Confidence: 0.842150046666667

 $00:09:54.792 \longrightarrow 00:09:56.840$ that can target these mechanisms.

NOTE Confidence: 0.842150046666667

 $00{:}09{:}56.840 \dashrightarrow 00{:}09{:}59.619$ So this is a very simple actually

NOTE Confidence: 0.842150046666667

00:09:59.619 --> 00:10:02.640 summary of how the MLL fusion works.

NOTE Confidence: 0.842150046666667

 $00:10:02.640 \longrightarrow 00:10:06.438$ So here in Gray is the ML AF9 fusion,

NOTE Confidence: 0.842150046666667

 $00:10:06.440 \longrightarrow 00:10:08.379$ the in terminus of MLL bound to

NOTE Confidence: 0.842150046666667

 $00:10:08.379 \longrightarrow 00:10:10.401$ some of the proteins normally found

NOTE Confidence: 0.842150046666667

00:10:10.401 --> 00:10:13.019 in the MLL complex Menon and Ledge

 $00:10:13.085 \longrightarrow 00:10:15.095$ F here and those help localize

NOTE Confidence: 0.842150046666667

 $00{:}10{:}15.095 \dashrightarrow 00{:}10{:}16.748$ the fusion protein to chromatin.

NOTE Confidence: 0.842150046666667

 $00:10:16.748 \longrightarrow 00:10:19.212$ And then the C terminal part of the

NOTE Confidence: 0.842150046666667

 $00:10:19.212 \longrightarrow 00:10:21.706$ fusion brings in a number of complexes

NOTE Confidence: 0.842150046666667

00:10:21.706 --> 00:10:23.479 is histone methyl transferase .1 L,

NOTE Confidence: 0.842150046666667

 $00:10:23.480 \longrightarrow 00:10:25.592$ which is a histone H3 lysine

NOTE Confidence: 0.842150046666667

 $00:10:25.592 \longrightarrow 00:10:27.591$ 79 methyl transferase And this

NOTE Confidence: 0.842150046666667

00:10:27.591 --> 00:10:29.679 so-called super elongation complex,

NOTE Confidence: 0.842150046666667

 $00{:}10{:}29.680 \dashrightarrow 00{:}10{:}32.752$ which is really a fundamental complex

NOTE Confidence: 0.842150046666667

00:10:32.752 --> 00:10:34.800 for controlling transcription broadly,

NOTE Confidence: 0.842150046666667

 $00:10:34.800 \longrightarrow 00:10:36.360$ not just in this setting.

NOTE Confidence: 0.842150046666667

 $00:10:36.360 \longrightarrow 00:10:39.726$ Certainly the MLL fusion drags these

NOTE Confidence: 0.842150046666667

 $00:10:39.726 \longrightarrow 00:10:41.970$ chromatin regulatory and transcriptional

NOTE Confidence: 0.842150046666667

 $00:10:42.049 \longrightarrow 00:10:44.730$ control proteins and complexes to its

NOTE Confidence: 0.842150046666667

 $00:10:44.730 \longrightarrow 00:10:47.840$ target genes to drive gene expression.

NOTE Confidence: 0.842150046666667

 $00:10:47.840 \longrightarrow 00:10:50.876$ So with that level of understanding,

 $00:10:50.880 \longrightarrow 00:10:52.976$ it became easier to go to pharma and

NOTE Confidence: 0.842150046666667

 $00:10:52.976 \longrightarrow 00:10:54.931$ biotech and to get them interested

NOTE Confidence: 0.842150046666667

 $00:10:54.931 \longrightarrow 00:10:56.651$ in developing small molecules that

NOTE Confidence: 0.842150046666667

 $00:10:56.651 \longrightarrow 00:10:58.358$ might target these mechanisms.

NOTE Confidence: 0.842150046666667

 $00:10:58.360 \longrightarrow 00:11:00.958$ Even though at the time no one knew

NOTE Confidence: 0.842150046666667

 $00:11:00.958 \longrightarrow 00:11:02.794$ if these were mechanisms be relevant

NOTE Confidence: 0.842150046666667

 $00:11:02.794 \longrightarrow 00:11:04.586$ beyond this relatively rare disease

NOTE Confidence: 0.842150046666667

 $00{:}11{:}04.586 \rightarrow 00{:}11{:}06.722$ which is probably A couple thousand

NOTE Confidence: 0.842150046666667

 $00{:}11{:}06.786 \dashrightarrow 00{:}11{:}08.956$ patients per year in the United States.

NOTE Confidence: 0.842150046666667

00:11:08.960 --> 00:11:10.088 But I'll show you,

NOTE Confidence: 0.842150046666667

00:11:10.088 --> 00:11:12.104 I think we think that indeed and

NOTE Confidence: 0.842150046666667

 $00:11:12.104 \longrightarrow 00:11:14.216$ in fact we have now shown in in

NOTE Confidence: 0.842150046666667

 $00{:}11{:}14.216 \dashrightarrow 00{:}11{:}15.920$ patients that it it actually is.

NOTE Confidence: 0.842150046666667

00:11:15.920 --> 00:11:16.880 So each, as I mentioned,

NOTE Confidence: 0.842150046666667

 $00:11:16.880 \longrightarrow 00:11:20.438$ each of these labels in red is a small

 $00:11:20.438 \longrightarrow 00:11:22.432$ molecule that's been developed to target

NOTE Confidence: 0.842150046666667

 $00:11:22.432 \longrightarrow 00:11:24.988$ various components of this large complex.

NOTE Confidence: 0.842150046666667

 $00:11:24.988 \longrightarrow 00:11:28.265$ And to summarize broadly on molecules

NOTE Confidence: 0.842150046666667

00:11:28.265 --> 00:11:30.400 that target the complexes on the right,

NOTE Confidence: 0.842150046666667

 $00:11:30.400 \longrightarrow 00:11:32.104$ the kind of general

NOTE Confidence: 0.842150046666667

00:11:32.104 --> 00:11:32.956 transcriptional complexes,

NOTE Confidence: 0.842150046666667

 $00:11:32.960 \longrightarrow 00:11:35.156$ the problem there has primarily been

NOTE Confidence: 0.842150046666667

 $00:11:35.156 \longrightarrow 00:11:37.520$ toxicity that actually not too surprising

NOTE Confidence: 0.842150046666667

00:11:37.520 --> 00:11:39.600 you turn off transcription broadly,

NOTE Confidence: 0.842150046666667

 $00:11:39.600 \longrightarrow 00:11:41.168$ we can do that with some of

NOTE Confidence: 0.842150046666667

 $00{:}11{:}41.168 \dashrightarrow 00{:}11{:}41.840$ our chemotherapeutic drugs.

NOTE Confidence: 0.842150046666667

00:11:41.840 --> 00:11:44.040 It's relatively toxic on the

NOTE Confidence: 0.842150046666667

 $00:11:44.040 \longrightarrow 00:11:47.052$ left side and to date the problem

NOTE Confidence: 0.842150046666667

00:11:47.052 --> 00:11:48.676 has actually been efficacy,

NOTE Confidence: 0.842150046666667

 $00:11:48.680 \longrightarrow 00:11:51.067$ meaning we can do pre clinical studies

NOTE Confidence: 0.842150046666667

 $00{:}11{:}51.067 \dashrightarrow 00{:}11{:}53.150$ and I'll briefly load to this with

 $00:11:53.150 \longrightarrow 00:11:54.840$.1 actually get really impressive

NOTE Confidence: 0.842150046666667

 $00{:}11{:}54.840 \dashrightarrow 00{:}11{:}57.000$ changes in gene expression and such.

NOTE Confidence: 0.842150046666667

00:11:57.000 --> 00:11:59.261 But then we go into patients with

NOTE Confidence: 0.842150046666667

 $00:11:59.261 \longrightarrow 00:12:01.589$ the .1 inhibitor get a little bit

NOTE Confidence: 0.842150046666667

 $00{:}12{:}01.589 \dashrightarrow 00{:}12{:}04.075$ of clinical signal and but unable

NOTE Confidence: 0.842150046666667

 $00{:}12{:}04.075 \dashrightarrow 00{:}12{:}06.600$ to maintain that clinical response.

NOTE Confidence: 0.842150046666667

00:12:06.600 --> 00:12:08.718 But but toxicity has not primarily

NOTE Confidence: 0.842150046666667

 $00:12:08.718 \longrightarrow 00:12:10.866$ been a problem for the molecules

NOTE Confidence: 0.842150046666667

 $00:12:10.866 \longrightarrow 00:12:13.040$ on the left side of this figures

NOTE Confidence: 0.842150046666667

 $00:12:13.040 \longrightarrow 00:12:14.720$ and that's kind of where we've

NOTE Confidence: 0.777851471538462

00:12:14.720 --> 00:12:17.051 focused. And I'm going to talk a

NOTE Confidence: 0.777851471538462

00:12:17.051 --> 00:12:19.480 lot about this protein Menon here,

NOTE Confidence: 0.777851471538462

 $00{:}12{:}19.480 \dashrightarrow 00{:}12{:}21.514$ which is really a scaffolding protein

NOTE Confidence: 0.777851471538462

 $00:12:21.514 \longrightarrow 00:12:23.561$ that's bound to the MLL fusion

NOTE Confidence: 0.777851471538462

 $00:12:23.561 \longrightarrow 00:12:25.433$ and helps keep it on chromatin.

 $00:12:25.440 \longrightarrow 00:12:27.555$ I'll show you more about that in a minute.

NOTE Confidence: 0.777851471538462

00:12:27.560 --> 00:12:29.960 Men and as an important part of the

NOTE Confidence: 0.777851471538462

 $00:12:29.960 \longrightarrow 00:12:31.776$ Amylo complex was first demonstrated

NOTE Confidence: 0.777851471538462

 $00:12:31.776 \longrightarrow 00:12:34.040$ in 2004 by Michael Cleary's group.

NOTE Confidence: 0.777851471538462

 $00:12:34.040 \longrightarrow 00:12:36.196$ And now there are many small molecules.

NOTE Confidence: 0.777851471538462

 $00:12:36.200 \longrightarrow 00:12:38.377$ I'll talk about the one we've been

NOTE Confidence: 0.777851471538462

 $00:12:38.377 \longrightarrow 00:12:40.124$ working on that disrupt this interaction.

NOTE Confidence: 0.777851471538462

00:12:40.124 --> 00:12:42.240 I'll show you how in a minute.

NOTE Confidence: 0.777851471538462

00:12:42.240 --> 00:12:44.080 And that really that concept,

NOTE Confidence: 0.777851471538462

 $00:12:44.080 \longrightarrow 00:12:45.964$ the first chemical biology done around

NOTE Confidence: 0.777851471538462

 $00:12:45.964 \longrightarrow 00:12:48.654$ this was done by Yolanda Grimbeck is due

NOTE Confidence: 0.777851471538462

 $00:12:48.654 \longrightarrow 00:12:50.712$ in Michigan where they developed the

NOTE Confidence: 0.777851471538462

 $00{:}12{:}50.770 \dashrightarrow 00{:}12{:}52.996$ first small molecule to bind to minute.

NOTE Confidence: 0.777851471538462

00:12:53.000 --> 00:12:54.554 So just quickly I'm going to

NOTE Confidence: 0.777851471538462

 $00:12:54.554 \longrightarrow 00:12:56.480$ this is kind of jumping ahead,

NOTE Confidence: 0.777851471538462

 $00:12:56.480 \longrightarrow 00:12:58.608$ but it's a concept that I think is

 $00:12:58.608 \longrightarrow 00:13:00.725$ important in terms when we think

NOTE Confidence: 0.777851471538462

 $00:13:00.725 \longrightarrow 00:13:02.245$ about targeting chromatin complexes

NOTE Confidence: 0.777851471538462

 $00:13:02.245 \longrightarrow 00:13:03.874$ in leukemia or other diseases.

NOTE Confidence: 0.777851471538462

 $00:13:03.874 \longrightarrow 00:13:06.706$ So if this is a even more simplified

NOTE Confidence: 0.777851471538462

00:13:06.706 --> 00:13:09.518 view of the ML AF9 bound to chromatin

NOTE Confidence: 0.777851471538462

 $00{:}13{:}09.518 \dashrightarrow 00{:}13{:}11.151$ through its adapter proteins and

NOTE Confidence: 0.777851471538462

 $00:13:11.151 \longrightarrow 00:13:13.960$ bring it in this case the .1 complex.

NOTE Confidence: 0.777851471538462

 $00{:}13{:}13.960 \dashrightarrow 00{:}13{:}16.214$ I told you that we worked actually

NOTE Confidence: 0.777851471538462

 $00:13:16.214 \longrightarrow 00:13:18.619$ over a decade ago now with a

NOTE Confidence: 0.777851471538462

 $00:13:18.619 \longrightarrow 00:13:20.671$ company called Epizyme to make small

NOTE Confidence: 0.777851471538462

 $00:13:20.742 \longrightarrow 00:13:23.157$ molecule enzymatic inhibitors of .1.

NOTE Confidence: 0.777851471538462

 $00{:}13{:}23.160 \dashrightarrow 00{:}13{:}24.805$ We've shown with genetic studies

NOTE Confidence: 0.777851471538462

 $00{:}13{:}24.805 \to 00{:}13{:}26.872$ that that is an important component

NOTE Confidence: 0.777851471538462

 $00{:}13{:}26.872 \dashrightarrow 00{:}13{:}29.020$ of this complex and that his tone

NOTE Confidence: 0.777851471538462

 $00:13:29.020 \longrightarrow 00:13:30.720$ modification that it put places

00:13:30.720 --> 00:13:33.005 is important for controlling MLO

NOTE Confidence: 0.777851471538462

 $00{:}13{:}33.005 \dashrightarrow 00{:}13{:}34.833$ fusion driven gene expression.

NOTE Confidence: 0.777851471538462

 $00:13:34.840 \longrightarrow 00:13:36.898$ And that went into clinical trials and

NOTE Confidence: 0.777851471538462

 $00:13:36.898 \longrightarrow 00:13:39.431$ we were able to a couple of patients

NOTE Confidence: 0.777851471538462

00:13:39.431 --> 00:13:41.016 actually went into to remission

NOTE Confidence: 0.777851471538462

00:13:41.083 --> 00:13:42.980 and many had some response but it

NOTE Confidence: 0.777851471538462

 $00:13:42.980 \longrightarrow 00:13:44.496$ they were all pretty transient.

NOTE Confidence: 0.777851471538462

00:13:44.496 --> 00:13:46.932 And I'm going to show you that

NOTE Confidence: 0.777851471538462

 $00:13:46.932 \longrightarrow 00:13:49.436$ that's not the case with the min an

NOTE Confidence: 0.777851471538462

00:13:49.436 --> 00:13:50.998 inhibitor and this summarizes why

NOTE Confidence: 0.777851471538462

 $00{:}13{:}50.998 \dashrightarrow 00{:}13{:}53.764$ we think that is that if you the .1

NOTE Confidence: 0.777851471538462

 $00:13:53.764 \longrightarrow 00:13:55.374$ L inhibitor inhibits the enzymatic

NOTE Confidence: 0.777851471538462

00:13:55.374 --> 00:13:56.840 activity of this protein,

NOTE Confidence: 0.777851471538462

 $00:13:56.840 \longrightarrow 00:13:59.240$ but the whole complex remains stuck

NOTE Confidence: 0.777851471538462

 $00:13:59.240 \longrightarrow 00:14:00.040$ on chromatin.

NOTE Confidence: 0.777851471538462

 $00{:}14{:}00.040 \dashrightarrow 00{:}14{:}01.720$ So it's actually doesn't take a

 $00:14:01.720 \longrightarrow 00:14:03.929$ lot for the cell to figure out how

NOTE Confidence: 0.777851471538462

 $00:14:03.929 \longrightarrow 00:14:05.887$ to deal with the fact that that

NOTE Confidence: 0.777851471538462

 $00:14:05.887 \longrightarrow 00:14:08.035$ enzymatic activity is no longer there.

NOTE Confidence: 0.777851471538462

 $00:14:08.040 \longrightarrow 00:14:09.096$ Whereas what I'm going to show

NOTE Confidence: 0.777851471538462

00:14:09.096 --> 00:14:10.440 you with the MLL Menin inhibitor,

NOTE Confidence: 0.777851471538462

 $00:14:10.440 \longrightarrow 00:14:12.534$ it actually disrupts the whole complex

NOTE Confidence: 0.777851471538462

 $00:14:12.534 \longrightarrow 00:14:15.141$ and much of the complex lifts and

NOTE Confidence: 0.777851471538462

00:14:15.141 --> 00:14:17.427 the fusion protein lifts off of

NOTE Confidence: 0.777851471538462

 $00{:}14{:}17.427 \dashrightarrow 00{:}14{:}19.400$ chromatin and we think that probably

NOTE Confidence: 0.777851471538462

 $00:14:19.400 \longrightarrow 00:14:21.512$ is why the the Menin inhibitor

NOTE Confidence: 0.777851471538462

 $00{:}14{:}21.512 \dashrightarrow 00{:}14{:}23.880$ approach is more dramatic.

NOTE Confidence: 0.777851471538462

 $00:14:23.880 \longrightarrow 00:14:26.162$ So in 2019 we published the small

NOTE Confidence: 0.777851471538462

 $00{:}14{:}26.162 \dashrightarrow 00{:}14{:}28.484$ molecule that we were working on which

NOTE Confidence: 0.777851471538462

 $00:14:28.484 \longrightarrow 00:14:30.708$ was at the time called BTP 5O469.

NOTE Confidence: 0.777851471538462

00:14:30.708 --> 00:14:33.220 The version of it that's in the clinic

00:14:33.292 --> 00:14:35.408 is called Syndex 5613 or Revu Minib.

NOTE Confidence: 0.777851471538462

 $00:14:35.408 \longrightarrow 00:14:37.040$ Get to that in a minute.

NOTE Confidence: 0.777851471538462

 $00:14:37.040 \longrightarrow 00:14:38.937$ And this is a very potent small

NOTE Confidence: 0.777851471538462

 $00:14:38.937 \longrightarrow 00:14:40.679$ molecule that binds to this pocket on

NOTE Confidence: 0.777851471538462

 $00:14:40.679 \longrightarrow 00:14:42.680$ men and this is the men and protein.

NOTE Confidence: 0.777851471538462

00:14:42.680 --> 00:14:44.997 This is the crystal structure of this

NOTE Confidence: 0.777851471538462

00:14:45.000 --> 00:14:48.048 protein here in purple and blocks

NOTE Confidence: 0.777851471538462

 $00:14:48.048 \longrightarrow 00:14:50.533$ the interaction between men and

NOTE Confidence: 0.777851471538462

 $00:14:50.533 \longrightarrow 00:14:52.786$ and the MLL fusion and that leads

NOTE Confidence: 0.777851471538462

 $00:14:52.786 \longrightarrow 00:14:55.075$ to as I mentioned the loss of this

NOTE Confidence: 0.777851471538462

 $00:14:55.075 \longrightarrow 00:14:56.239$ complex on chromatin,

NOTE Confidence: 0.777851471538462

00:14:56.240 --> 00:14:57.888 but interestingly enough only

NOTE Confidence: 0.777851471538462

 $00:14:57.888 \longrightarrow 00:15:00.360$ does it at very selected sites.

NOTE Confidence: 0.89274465

 $00:15:00.360 \longrightarrow 00:15:02.976$ This complex actually remains on on

NOTE Confidence: 0.89274465

00:15:02.976 --> 00:15:05.995 chromatin and the wild type complex which

NOTE Confidence: 0.89274465

 $00:15:05.995 \longrightarrow 00:15:08.146$ would also be potentially disrupted

 $00:15:08.146 \longrightarrow 00:15:10.984$ by this molecule remains on chromatin

NOTE Confidence: 0.89274465

 $00{:}15{:}10.984 \to 00{:}15{:}13.416$ at many sites throughout the genome.

NOTE Confidence: 0.89274465

00:15:13.416 --> 00:15:15.528 But there's a very selected group

NOTE Confidence: 0.89274465

 $00:15:15.528 \longrightarrow 00:15:17.556$ of genes loci where it's lost.

NOTE Confidence: 0.89274465

 $00:15:17.560 \longrightarrow 00:15:19.240$ The importance of that is,

NOTE Confidence: 0.89274465

 $00:15:19.240 \longrightarrow 00:15:22.536$ is that we know genetic inactivation of MLL

NOTE Confidence: 0.89274465

 $00:15:22.536 \longrightarrow 00:15:26.037$ broadly is toxic that to hematopoietic cells.

NOTE Confidence: 0.89274465

 $00:15:26.040 \longrightarrow 00:15:28.182$ But there's some reason that this

NOTE Confidence: 0.89274465

 $00{:}15{:}28.182 \dashrightarrow 00{:}15{:}30.651$ mechanism seems to be only important

NOTE Confidence: 0.89274465

 $00{:}15{:}30.651 \dashrightarrow 00{:}15{:}32.599$ at certain developmental loci.

NOTE Confidence: 0.89274465

 $00{:}15{:}32.600 \dashrightarrow 00{:}15{:}34.877$ And we think that may be why we're not

NOTE Confidence: 0.89274465

 $00:15:34.877 \longrightarrow 00:15:36.714$ seeing tremendous toxicity that you

NOTE Confidence: 0.89274465

 $00{:}15{:}36.714 \dashrightarrow 00{:}15{:}39.006$ could imagine by lifting this chromatin

NOTE Confidence: 0.89274465

 $00:15:39.065 \longrightarrow 00:15:40.920$ complexes off the genome broadly.

NOTE Confidence: 0.89274465

 $00:15:40.920 \longrightarrow 00:15:43.370$ And this is just one example of

00:15:43.370 --> 00:15:45.570 a preclinical PDX study that we

NOTE Confidence: 0.89274465

00:15:45.570 --> 00:15:47.712 did with an MLL rearranged AML.

NOTE Confidence: 0.89274465

00:15:47.720 --> 00:15:49.160 All of you probably know what

NOTE Confidence: 0.89274465

00:15:49.160 --> 00:15:49.880 PDX studies are,

NOTE Confidence: 0.89274465

00:15:49.880 --> 00:15:51.940 inject the human leukemia into

NOTE Confidence: 0.89274465

 $00:15:51.940 \longrightarrow 00:15:54.608$ immunodeficient mice and treat the mice here

NOTE Confidence: 0.89274465

 $00:15:54.608 \longrightarrow 00:15:57.360$ with two cycles if you will of of therapy.

NOTE Confidence: 0.89274465

 $00:15:57.360 \longrightarrow 00:16:00.314$ And the beauty of this experiment is

NOTE Confidence: 0.89274465

 $00:16:00.320 \longrightarrow 00:16:03.339$ from a technical standpoint is Syndax

NOTE Confidence: 0.89274465

 $00:16:03.339 \longrightarrow 00:16:05.853$ actually supplies us with mouse chow

NOTE Confidence: 0.89274465

 $00{:}16{:}05.853 \dashrightarrow 00{:}16{:}07.800$ that's impregnated with the drugs.

NOTE Confidence: 0.89274465

 $00:16:07.800 \longrightarrow 00:16:10.716$ So you don't actually have to dose the mice.

NOTE Confidence: 0.89274465

 $00:16:10.720 \longrightarrow 00:16:13.317$ People in the lab love that fact.

NOTE Confidence: 0.89274465

 $00{:}16{:}13.320 \dashrightarrow 00{:}16{:}15.156$ So basically you inject the leukemia,

NOTE Confidence: 0.89274465

 $00:16:15.160 \longrightarrow 00:16:16.308$ change the food and come back in

NOTE Confidence: 0.89274465

 $00{:}16{:}16.308 \dashrightarrow 00{:}16{:}17.518$ a month and see what happened.

00:16:17.520 --> 00:16:18.955 And it's obviously not quite that simple,

NOTE Confidence: 0.89274465

 $00:16:18.960 \longrightarrow 00:16:22.164$ but so we were able to do these experiments

NOTE Confidence: 0.89274465

 $00:16:22.164 \longrightarrow 00:16:25.278$ with much more speed and much less pain

NOTE Confidence: 0.89274465

 $00:16:25.280 \longrightarrow 00:16:27.198$ than they than they often can take.

NOTE Confidence: 0.89274465

 $00:16:27.200 \longrightarrow 00:16:29.054$ And so you can see here that the the

NOTE Confidence: 0.89274465

00:16:29.054 --> 00:16:31.080 mice that were treated with the MIN,

NOTE Confidence: 0.89274465

00:16:31.080 --> 00:16:33.170 an inhibitor essentially the AML

NOTE Confidence: 0.89274465

00:16:33.170 --> 00:16:36.200 in this PDX model was eradicated,

NOTE Confidence: 0.89274465

 $00:16:36.200 \longrightarrow 00:16:38.027$ which as most of you know who

NOTE Confidence: 0.89274465

00:16:38.027 --> 00:16:39.760 do these types of experiments.

NOTE Confidence: 0.89274465

 $00:16:39.760 \longrightarrow 00:16:42.220$ That's not the how these experiments

NOTE Confidence: 0.89274465

 $00:16:42.220 \longrightarrow 00:16:43.040$ usually go.

NOTE Confidence: 0.89274465

 $00:16:43.040 \longrightarrow 00:16:45.945$ You might see a prolongation of survival

NOTE Confidence: 0.89274465

00:16:45.945 --> 00:16:48.759 but not this degree of response.

NOTE Confidence: 0.89274465

 $00:16:48.760 \longrightarrow 00:16:51.104$ Same thing in a model that a lot

00:16:51.104 --> 00:16:52.040 of people use,

NOTE Confidence: 0.89274465

 $00:16:52.040 \longrightarrow 00:16:53.648$ this retroviral model of ML AF9

NOTE Confidence: 0.89274465

 $00:16:53.648 \longrightarrow 00:16:55.439$ that we've used a lot as well,

NOTE Confidence: 0.89274465

 $00:16:55.440 \longrightarrow 00:16:58.996$ which does lead to a very aggressive

NOTE Confidence: 0.89274465

 $00:16:59.000 \longrightarrow 00:16:59.764$ mouse AML.

NOTE Confidence: 0.89274465

 $00:16:59.764 \longrightarrow 00:17:01.674$ And you can see here,

NOTE Confidence: 0.89274465

 $00{:}17{:}01.680 \dashrightarrow 00{:}17{:}03.804$ we've treated mice that have gotten

NOTE Confidence: 0.89274465

 $00:17:03.804 \longrightarrow 00:17:05.520$ these cells injected with the,

NOTE Confidence: 0.89274465

 $00:17:05.520 \longrightarrow 00:17:06.020$ the min,

NOTE Confidence: 0.89274465

 $00:17:06.020 \longrightarrow 00:17:07.520$ an inhibitor for this period of

NOTE Confidence: 0.89274465

 $00:17:07.520 \longrightarrow 00:17:08.480$ time and in fact,

NOTE Confidence: 0.89274465

 $00:17:08.480 \longrightarrow 00:17:11.399$ it eradicated the disease in this model.

NOTE Confidence: 0.89274465

00:17:11.400 --> 00:17:13.444 So that is again very different from

NOTE Confidence: 0.89274465

00:17:13.444 --> 00:17:15.902 what most of the graphs will look like

NOTE Confidence: 0.89274465

 $00:17:15.902 \longrightarrow 00:17:18.080$ when you do an experiment like this.

NOTE Confidence: 0.89274465

 $00:17:18.080 \longrightarrow 00:17:20.456$ So really indicating that

 $00{:}17{:}20.456 \dashrightarrow 00{:}17{:}22.238$ there's significant potential.

NOTE Confidence: 0.89274465

 $00{:}17{:}22.240 \dashrightarrow 00{:}17{:}24.354$ So I'm going to switch diseases or

NOTE Confidence: 0.89274465

00:17:24.354 --> 00:17:26.217 switch subtypes of leukemia and tell

NOTE Confidence: 0.89274465

 $00{:}17{:}26.217 {\:\dashrightarrow\:} 00{:}17{:}28.296$ you a little bit about a different

NOTE Confidence: 0.89274465

 $00:17:28.354 \longrightarrow 00:17:31.092$ subtype that one is interesting and

NOTE Confidence: 0.89274465

 $00:17:31.092 \longrightarrow 00:17:33.432$ two actually kind of changed the

NOTE Confidence: 0.89274465

 $00:17:33.432 \longrightarrow 00:17:35.400$ level of interest from biotech and

NOTE Confidence: 0.89274465

 $00:17:35.469 \longrightarrow 00:17:37.599$ pharma because it's way more common

NOTE Confidence: 0.89274465

 $00:17:37.600 \longrightarrow 00:17:40.396$ and that's NPM one mutant AML.

NOTE Confidence: 0.89274465

 $00{:}17{:}40.400 \dashrightarrow 00{:}17{:}42.563$ And I keep saying that because as

NOTE Confidence: 0.89274465

 $00:17:42.563 \longrightarrow 00:17:44.452$ you can probably tell in paediatrics

NOTE Confidence: 0.89274465

 $00:17:44.452 \longrightarrow 00:17:45.756$ and other rare cancers,

NOTE Confidence: 0.89274465

 $00{:}17{:}45.760 \dashrightarrow 00{:}17{:}47.944$ we're constantly and many of you

NOTE Confidence: 0.89274465

 $00:17:47.944 \longrightarrow 00:17:49.690$ probably recognize this when we're

NOTE Confidence: 0.89274465

00:17:49.690 --> 00:17:51.640 talking about drug discovery and development,

00:17:51.640 --> 00:17:53.518 having to convince people to work

NOTE Confidence: 0.89274465

 $00:17:53.518 \longrightarrow 00:17:55.608$ on the diseases we're interested in

NOTE Confidence: 0.89274465

 $00:17:55.608 \longrightarrow 00:17:57.558$ because they're indeed quite rare.

NOTE Confidence: 0.926010796

00:17:57.560 --> 00:18:00.296 When you go from 1000 to 2000 patients per

NOTE Confidence: 0.926010796

 $00:18:00.296 \longrightarrow 00:18:02.976$ year in the United States to 15 into 17,000

NOTE Confidence: 0.926010796

 $00{:}18{:}02.976 \dashrightarrow 00{:}18{:}04.880$ patients per year in the United States,

NOTE Confidence: 0.926010796

 $00:18:04.880 \longrightarrow 00:18:07.155$ you actually get a lot more interest.

NOTE Confidence: 0.926010796

 $00:18:07.160 \longrightarrow 00:18:09.176$ And so that's one of the

NOTE Confidence: 0.926010796

00:18:09.176 --> 00:18:10.880 reasons beyond just the the,

NOTE Confidence: 0.926010796

 $00{:}18{:}10.880 \dashrightarrow 00{:}18{:}12.352$ the mechanistic interest that

NOTE Confidence: 0.926010796

 $00:18:12.352 \longrightarrow 00:18:14.192$ I think this is important.

NOTE Confidence: 0.926010796

00:18:14.200 --> 00:18:16.792 So Michael Kuhn, when we were in New York,

NOTE Confidence: 0.926010796

 $00:18:16.800 \longrightarrow 00:18:19.944$ a fellow at the time asked

NOTE Confidence: 0.926010796

 $00{:}18{:}19.944 \dashrightarrow 00{:}18{:}21.090$ the question of well, OK,

NOTE Confidence: 0.926010796

 $00:18:21.090 \longrightarrow 00:18:22.840$ we know that the MLO rearranged leukemias.

NOTE Confidence: 0.926010796

 $00:18:22.840 \longrightarrow 00:18:25.288$ This is a gene expression data for

00:18:25.288 --> 00:18:27.560 the HOX genes and MIS ones from Tim

NOTE Confidence: 0.926010796

 $00{:}18{:}27.633 \dashrightarrow 00{:}18{:}29.633$ LAYS group in a bunch of AM LS,

NOTE Confidence: 0.926010796

00:18:29.640 --> 00:18:31.000 and you probably know how to read these.

NOTE Confidence: 0.926010796

 $00:18:31.000 \longrightarrow 00:18:32.967$ Each row here is AG in each

NOTE Confidence: 0.926010796

 $00{:}18{:}32.967 \dashrightarrow 00{:}18{:}34.280$ column with leukemia sample.

NOTE Confidence: 0.926010796

00:18:34.280 --> 00:18:36.730 And here's the MLL rearranged group OX,

NOTE Confidence: 0.926010796

 $00:18:36.730 \longrightarrow 00:18:39.320$ A cluster we know that's long known.

NOTE Confidence: 0.926010796

 $00{:}18{:}39.320 \dashrightarrow 00{:}18{:}41.301$ In fact, some of the microarray data

NOTE Confidence: 0.926010796

00:18:41.301 --> 00:18:43.201 that I did as a fellow demonstrated

NOTE Confidence: 0.926010796

 $00{:}18{:}43.201 \dashrightarrow 00{:}18{:}45.769$ that the Hox A cluster is expressed in

NOTE Confidence: 0.926010796

 $00:18:45.769 \longrightarrow 00:18:48.200$ MLL rearranged leukemias as is MIS one.

NOTE Confidence: 0.926010796

 $00:18:48.200 \longrightarrow 00:18:50.840$ Those are two targets of the ML effusion

NOTE Confidence: 0.926010796

 $00{:}18{:}50.840 \dashrightarrow 00{:}18{:}53.679$ that have been worked on for many decades.

NOTE Confidence: 0.926010796

00:18:53.680 --> 00:18:55.936 It turns out in the NPM one mutant

NOTE Confidence: 0.926010796

 $00:18:55.936 \longrightarrow 00:18:58.395$ leukemia as you can see here on the right,

 $00:18:58.400 \longrightarrow 00:19:00.948$ they have the Hox A cluster as

NOTE Confidence: 0.926010796

00:19:00.948 --> 00:19:02.360 well and B cluster,

NOTE Confidence: 0.926010796

 $00:19:02.360 \longrightarrow 00:19:04.400$ another Hox cluster and MIS one.

NOTE Confidence: 0.926010796

 $00:19:04.400 \longrightarrow 00:19:06.568$ So this has also been known for some

NOTE Confidence: 0.926010796

 $00:19:06.568 \dashrightarrow 00:19:09.112$ time that this subset of AML and PM one

NOTE Confidence: 0.926010796

00:19:09.112 --> 00:19:11.480 mutant also tends to express the Hox genes.

NOTE Confidence: 0.926010796

 $00{:}19{:}11.480 \dashrightarrow 00{:}19{:}14.798$ So Michael using CRISPR which in

NOTE Confidence: 0.926010796

00:19:14.798 --> 00:19:17.657 2016 was still relatively new did

NOTE Confidence: 0.926010796

 $00:19:17.657 \longrightarrow 00:19:19.199$ a what's called a domain scan.

NOTE Confidence: 0.926010796

00:19:19.200 --> 00:19:20.920 I won't get into the details of that,

NOTE Confidence: 0.926010796

 $00:19:20.920 \longrightarrow 00:19:23.916$ but the point being that the inactivation

NOTE Confidence: 0.926010796

 $00{:}19{:}23.916 \dashrightarrow 00{:}19{:}27.165$ of MLL and ultimately I mean of men

NOTE Confidence: 0.926010796

 $00{:}19{:}27.165 \dashrightarrow 00{:}19{:}29.708$ and MLL led to differentiation and

NOTE Confidence: 0.926010796

 $00:19:29.708 \longrightarrow 00:19:33.199$ ultimately death of NPM one mutant AML cells.

NOTE Confidence: 0.926010796

 $00:19:33.200 \longrightarrow 00:19:36.000$ And the concept being at the time

NOTE Confidence: 0.926010796

 $00:19:36.000 \longrightarrow 00:19:38.213$ that the disruption of MLL and

00:19:38.213 --> 00:19:40.556 Menon in the NPM one state somehow

NOTE Confidence: 0.926010796

 $00:19:40.556 \longrightarrow 00:19:44.364$ leads to a decrease in the Hox gene

NOTE Confidence: 0.926010796

 $00:19:44.364 \longrightarrow 00:19:46.319$ expression and therefore ultimately

NOTE Confidence: 0.926010796

 $00:19:46.319 \longrightarrow 00:19:49.277$ a enemies one expression and therefore

NOTE Confidence: 0.926010796

 $00:19:49.277 \longrightarrow 00:19:51.640$ ultimately changes in gene expression.

NOTE Confidence: 0.926010796

00:19:51.640 --> 00:19:52.124 Hannah Okleman,

NOTE Confidence: 0.926010796

 $00:19:52.124 \longrightarrow 00:19:54.403$ who was a a fellow in the lab just

NOTE Confidence: 0.926010796

00:19:54.403 --> 00:19:55.803 recently moved back to Germany

NOTE Confidence: 0.926010796

 $00:19:55.803 \longrightarrow 00:19:57.200$ to start her own lab,

NOTE Confidence: 0.926010796

 $00{:}19{:}57.200 \dashrightarrow 00{:}20{:}00.000$ then demonstrated that similar to

NOTE Confidence: 0.926010796

 $00:20:00.000 \longrightarrow 00:20:03.576$ the MLL fusions that NPM 1 mutations

NOTE Confidence: 0.926010796

 $00{:}20{:}03.576 \dashrightarrow 00{:}20{:}06.456$ in mouse models could transform

NOTE Confidence: 0.926010796

 $00{:}20{:}06.456 \dashrightarrow 00{:}20{:}08.760$ multiple hematopoietic cell types,

NOTE Confidence: 0.926010796

 $00:20:08.760 \longrightarrow 00:20:10.853$ stem cells a little bit more significantly

NOTE Confidence: 0.926010796

 $00:20:10.853 \longrightarrow 00:20:12.360$ more efficiently than progenitors,

 $00:20:12.360 \longrightarrow 00:20:15.445$ but also could transform progenitors

NOTE Confidence: 0.926010796

 $00:20:15.445 \longrightarrow 00:20:17.022$ as well and.

NOTE Confidence: 0.926010796

 $00:20:17.022 \longrightarrow 00:20:18.048$ Needless to say,

NOTE Confidence: 0.926010796

 $00:20:18.048 \longrightarrow 00:20:21.481$ there was still a question as to kind of

NOTE Confidence: 0.926010796

 $00:20:21.481 \longrightarrow 00:20:23.440$ mechanistically how all this was working.

NOTE Confidence: 0.926010796

00:20:23.440 --> 00:20:26.114 I'm going to summarize some chip seek

NOTE Confidence: 0.926010796

00:20:26.114 --> 00:20:29.040 data here that really shows that at

NOTE Confidence: 0.926010796

00:20:29.040 --> 00:20:31.596 least at this level of understanding,

NOTE Confidence: 0.926010796

 $00{:}20{:}31.600 \dashrightarrow 00{:}20{:}34.134$ it's quite similar to what we see

NOTE Confidence: 0.926010796

 $00:20:34.134 \longrightarrow 00:20:36.880$ with the MLL rearranged leukemia.

NOTE Confidence: 0.926010796

 $00{:}20{:}36.880 \dashrightarrow 00{:}20{:}39.106$ So these are NPM one mutant cell

NOTE Confidence: 0.926010796

00:20:39.106 --> 00:20:41.063 lines where we're doing chromatin

NOTE Confidence: 0.926010796

 $00:20:41.063 \longrightarrow 00:20:43.408$ immunoprecipitation for men and for

NOTE Confidence: 0.926010796

 $00{:}20{:}43.408 \dashrightarrow 00{:}20{:}47.066$ example either in a control setting in

NOTE Confidence: 0.926010796

 $00:20:47.066 \longrightarrow 00:20:49.238$ black PMSO treated cells or the min

NOTE Confidence: 0.926010796

 $00{:}20{:}49.238 \dashrightarrow 00{:}20{:}51.070$ inhibitor treated cells and you can see

 $00:20:51.070 \longrightarrow 00:20:52.680$ that min and comes off of chromatin.

NOTE Confidence: 0.926010796

 $00:20:52.680 \longrightarrow 00:20:54.252$ We know that when we treat

NOTE Confidence: 0.926010796

 $00:20:54.252 \longrightarrow 00:20:55.300$ with the min inhibitor

NOTE Confidence: 0.80620684625

00:20:55.355 --> 00:20:56.690 min and lifts off of

NOTE Confidence: 0.80620684625

 $00:20:56.690 \longrightarrow 00:20:58.004$ chromatin MLL shown here.

NOTE Confidence: 0.80620684625

 $00:20:58.004 \longrightarrow 00:21:00.440$ Now this is wild type MLL because

NOTE Confidence: 0.80620684625

00:21:00.516 --> 00:21:02.714 it's a mutant in PM one setting

NOTE Confidence: 0.80620684625

 $00:21:02.720 \longrightarrow 00:21:04.238$ doesn't come off the Hawks loci.

NOTE Confidence: 0.80620684625

00:21:04.240 --> 00:21:06.760 We'd seen that in the MLL fusion setting

NOTE Confidence: 0.80620684625

 $00{:}21{:}06.760 \dashrightarrow 00{:}21{:}09.235$ as well but does come off of MES 1.

NOTE Confidence: 0.80620684625

00:21:09.240 --> 00:21:11.688 So this is that concept that I show you

NOTE Confidence: 0.80620684625

 $00:21:11.688 \longrightarrow 00:21:13.988$ that certain loci respond differently to

NOTE Confidence: 0.80620684625

 $00{:}21{:}13.988 \dashrightarrow 00{:}21{:}17.072$ the min and inhibitor and this is showing

NOTE Confidence: 0.80620684625

 $00:21:17.072 \longrightarrow 00:21:20.400$ the RNA SEC or the gene expression.

NOTE Confidence: 0.80620684625

 $00:21:20.400 \longrightarrow 00:21:22.360$ And you can see that when there's

 $00:21:22.360 \longrightarrow 00:21:24.062$ a correlation between loss of MLL

NOTE Confidence: 0.80620684625

 $00:21:24.062 \longrightarrow 00:21:25.682$ occupancy and loss of gene expression

NOTE Confidence: 0.80620684625

 $00:21:25.682 \longrightarrow 00:21:27.815$ and this is that looking at that more

NOTE Confidence: 0.80620684625

 $00:21:27.815 \longrightarrow 00:21:29.904$ broadly by what's called a GSDA analysis.

NOTE Confidence: 0.80620684625

 $00:21:29.904 \longrightarrow 00:21:32.987$ So the point being that much like what we saw

NOTE Confidence: 0.80620684625

 $00:21:32.987 \longrightarrow 00:21:35.639$ in the MLL fusions in the NPM one setting,

NOTE Confidence: 0.80620684625

00:21:35.640 --> 00:21:37.062 you treat with the men inhibitor

NOTE Confidence: 0.80620684625

 $00{:}21{:}37.062 \dashrightarrow 00{:}21{:}38.680$ men and comes off of chromatin.

NOTE Confidence: 0.80620684625

00:21:38.680 --> 00:21:41.053 The MLL protein itself comes off of

NOTE Confidence: 0.80620684625

 $00:21:41.053 \longrightarrow 00:21:43.400$ chromatin at about 100 to 150 loci

NOTE Confidence: 0.80620684625

 $00:21:43.400 \longrightarrow 00:21:46.040$ and those genes lose their expression

NOTE Confidence: 0.80620684625

 $00:21:46.040 \longrightarrow 00:21:47.656$ when the cells differentiate.

NOTE Confidence: 0.80620684625

 $00:21:47.656 \longrightarrow 00:21:51.160$ And then if we go into PDX studies to

NOTE Confidence: 0.80620684625

00:21:51.160 --> 00:21:54.120 NPM one mutant flip 3 ITD Co mutant,

NOTE Confidence: 0.80620684625

00:21:54.120 --> 00:21:57.438 these are relatively aggressive AM LS.

NOTE Confidence: 0.80620684625

 $00:21:57.440 \longrightarrow 00:21:59.786$ You can see again pretty impressive

 $00:21:59.786 \longrightarrow 00:22:02.000$ response in the PDX setting.

NOTE Confidence: 0.80620684625

 $00:22:02.000 \longrightarrow 00:22:04.432$ And for the people who start do these

NOTE Confidence: 0.80620684625

 $00:22:04.432 \longrightarrow 00:22:06.960$ types of experiments in the audience,

NOTE Confidence: 0.80620684625

 $00:22:06.960 \longrightarrow 00:22:08.822$ we actually as you probably know the

NOTE Confidence: 0.80620684625

 $00:22:08.822 \longrightarrow 00:22:11.137$ standard way to do this is put in

NOTE Confidence: 0.80620684625

 $00:22:11.137 \longrightarrow 00:22:12.597$ leukemia into an immunodeficient mouse,

NOTE Confidence: 0.80620684625

 $00:22:12.600 \longrightarrow 00:22:14.175$ the first sign of any leukemia in

NOTE Confidence: 0.80620684625

 $00:22:14.175 \longrightarrow 00:22:15.478$ the peripheral blood of those mice,

NOTE Confidence: 0.80620684625

 $00:22:15.480 \longrightarrow 00:22:16.972$ you start treating them.

NOTE Confidence: 0.80620684625

 $00:22:16.972 \longrightarrow 00:22:19.210$ We actually waited in this experiment

NOTE Confidence: 0.80620684625

 $00{:}22{:}19.273 \dashrightarrow 00{:}22{:}21.433$ on the right until the mice were ill

NOTE Confidence: 0.80620684625

 $00:22:21.440 \longrightarrow 00:22:24.560$ and started treating them and actually

NOTE Confidence: 0.80620684625

 $00{:}22{:}24.560 \dashrightarrow 00{:}22{:}27.070$ we could recover essentially 4 out of

NOTE Confidence: 0.80620684625

 $00:22:27.070 \longrightarrow 00:22:29.920$ five of the mice and eradicate the disease.

NOTE Confidence: 0.80620684625

 $00:22:29.920 \longrightarrow 00:22:32.144$ So we stacked the deck against us and

 $00:22:32.144 \longrightarrow 00:22:34.652$ we're still able to to make that or

NOTE Confidence: 0.80620684625

 $00:22:34.652 \longrightarrow 00:22:37.360$ extend the the survival of those mice.

NOTE Confidence: 0.80620684625

 $00:22:37.360 \longrightarrow 00:22:39.446$ So to summarize this at this point

NOTE Confidence: 0.80620684625

 $00:22:39.446 \longrightarrow 00:22:42.307$ we the MIN inhibitor and NPM one

NOTE Confidence: 0.80620684625

00:22:42.307 --> 00:22:44.199 mutant AML induces differentiation,

NOTE Confidence: 0.80620684625

00:22:44.200 --> 00:22:45.506 reverses leukemia,

NOTE Confidence: 0.80620684625

 $00{:}22{:}45.506 \dashrightarrow 00{:}22{:}48.118$ genic leukemic gene expression,

NOTE Confidence: 0.80620684625

00:22:48.120 --> 00:22:50.514 certain genes like MIS one removes

NOTE Confidence: 0.80620684625

 $00{:}22{:}50.514 \dashrightarrow 00{:}22{:}53.513$ MLL from those loci and we get

NOTE Confidence: 0.80620684625

00:22:53.513 --> 00:22:54.399 dramatic responses.

NOTE Confidence: 0.80620684625

 $00:22:54.400 \longrightarrow 00:22:56.864$ So that was exciting and that was

NOTE Confidence: 0.80620684625

 $00:22:56.864 \longrightarrow 00:22:59.093$ enough to get Janssen and Ichi

NOTE Confidence: 0.80620684625

 $00:22:59.093 \longrightarrow 00:23:01.048$ and the various other large

NOTE Confidence: 0.80620684625

00:23:01.048 --> 00:23:02.679 pharmaceutical companies interested in,

NOTE Confidence: 0.80620684625

 $00:23:02.680 \longrightarrow 00:23:04.508$ in small molecule development

NOTE Confidence: 0.80620684625

 $00:23:04.508 \longrightarrow 00:23:05.879$ of Menon inhibitors.

 $00:23:05.880 \longrightarrow 00:23:08.238$ But it's still there was still

NOTE Confidence: 0.80620684625

 $00:23:08.240 \longrightarrow 00:23:11.607$ something here we don't quite or didn't

NOTE Confidence: 0.80620684625

00:23:11.607 --> 00:23:14.444 guite understand is why is it that

NOTE Confidence: 0.80620684625

00:23:14.444 --> 00:23:16.927 the NPM one mutant AML is depending

NOTE Confidence: 0.80620684625

 $00{:}23{:}16.927 \dashrightarrow 00{:}23{:}20.000$ so much on the MLL Menon complex.

NOTE Confidence: 0.80620684625

 $00:23:20.000 \longrightarrow 00:23:22.359$ So Hannah dug into that as well.

NOTE Confidence: 0.80620684625

00:23:22.360 --> 00:23:23.480 You guys probably know this,

NOTE Confidence: 0.80620684625

 $00:23:23.480 \longrightarrow 00:23:25.440$ but this is just a little bit

NOTE Confidence: 0.80620684625

 $00:23:25.440 \longrightarrow 00:23:27.320$ about the mutant NPM one protein.

NOTE Confidence: 0.80620684625

 $00:23:27.320 \longrightarrow 00:23:28.958$ It's shown here.

NOTE Confidence: 0.80620684625

00:23:28.958 --> 00:23:29.504 Schematically,

NOTE Confidence: 0.80620684625

 $00:23:29.504 \longrightarrow 00:23:32.580$ it's found mostly in the nucleolus

NOTE Confidence: 0.80620684625

 $00:23:32.580 \longrightarrow 00:23:34.893$ in the wild type setting,

NOTE Confidence: 0.80620684625

 $00:23:34.893 \longrightarrow 00:23:36.558$ but when the mutation occurs,

NOTE Confidence: 0.80620684625

 $00:23:36.560 \longrightarrow 00:23:38.708$ it's a mutation in this nuclear

 $00:23:38.708 \longrightarrow 00:23:40.539$ or localization signal that then

NOTE Confidence: 0.80620684625

 $00{:}23{:}40.539 \dashrightarrow 00{:}23{:}42.519$ leads to a nuclear export signal.

NOTE Confidence: 0.80620684625

00:23:42.520 --> 00:23:44.832 So the mutant in PM one is largely

NOTE Confidence: 0.80620684625

 $00:23:44.832 \longrightarrow 00:23:46.966$ found in the cytoplasm and that

NOTE Confidence: 0.80620684625

00:23:46.966 --> 00:23:49.186 was recognized by the people who

NOTE Confidence: 0.80620684625

00:23:49.262 --> 00:23:51.448 initially described this mutation.

NOTE Confidence: 0.80620684625

00:23:51.448 --> 00:23:52.016 However,

NOTE Confidence: 0.80620684625

 $00:23:52.016 \longrightarrow 00:23:53.720$ there is some

NOTE Confidence: 0.825611378

00:23:53.720 --> 00:23:56.576 that remains the mutant in PM one

NOTE Confidence: 0.825611378

 $00:23:56.576 \longrightarrow 00:23:58.883$ in the nucleus and we've taken

NOTE Confidence: 0.825611378

00:23:58.883 --> 00:24:01.410 advantage of a system that many of

NOTE Confidence: 0.825611378

 $00:24:01.490 \longrightarrow 00:24:03.698$ you probably know about where you

NOTE Confidence: 0.825611378

 $00:24:03.698 \longrightarrow 00:24:06.318$ can now by CRISPR mediated homologous

NOTE Confidence: 0.825611378

 $00{:}24{:}06.318 \dashrightarrow 00{:}24{:}09.516$ recombination actually tag if you will,

NOTE Confidence: 0.825611378

 $00:24:09.520 \longrightarrow 00:24:13.456$ whatever gene or protein of interest with a

NOTE Confidence: 0.825611378

 $00:24:13.456 \longrightarrow 00:24:15.976$ degradable version of FK PP12 shown here.

 $00:24:15.976 \longrightarrow 00:24:18.310$ And actually this cell line was made

NOTE Confidence: 0.825611378

 $00:24:18.310 \longrightarrow 00:24:20.536$ by Peggy Goodell's group in at Baylor

NOTE Confidence: 0.825611378

 $00:24:20.536 \longrightarrow 00:24:23.299$ and you have a mutant NPM one protein

NOTE Confidence: 0.825611378

 $00:24:23.299 \longrightarrow 00:24:24.903$ that has this degradable version

NOTE Confidence: 0.825611378

 $00{:}24{:}24.903 \dashrightarrow 00{:}24{:}26.910$ of F KBP 12 and you can treat them

NOTE Confidence: 0.825611378

 $00:24:26.968 \longrightarrow 00:24:28.756$ with a small molecule Protac that

NOTE Confidence: 0.825611378

 $00:24:28.756 \longrightarrow 00:24:30.320$ will degrade the whole thing.

NOTE Confidence: 0.825611378

 $00{:}24{:}30.320 \dashrightarrow 00{:}24{:}32.602$ So you can degrade the mutant oncoprotein

NOTE Confidence: 0.825611378

00:24:32.602 --> 00:24:34.728 and look fairly rapidly after degradation

NOTE Confidence: 0.825611378

 $00:24:34.728 \longrightarrow 00:24:36.894$ as to what's happening and here's

NOTE Confidence: 0.825611378

 $00{:}24{:}36.894 \dashrightarrow 00{:}24{:}38.919$ how rapidly you get degradation.

NOTE Confidence: 0.825611378

 $00:24:38.920 \longrightarrow 00:24:40.845$ By 60 minutes you've got about half

NOTE Confidence: 0.825611378

 $00{:}24{:}40.845 \dashrightarrow 00{:}24{:}43.605$ of the mutant protein gone and by 120

NOTE Confidence: 0.825611378

 $00:24:43.605 \longrightarrow 00:24:45.075$ minutes essentially all of us gone.

NOTE Confidence: 0.825611378

 $00:24:45.080 \longrightarrow 00:24:47.144$ So it's relatively rapid and these

 $00:24:47.144 \longrightarrow 00:24:48.995$ types of experiments are quite

NOTE Confidence: 0.825611378

 $00:24:48.995 \longrightarrow 00:24:51.040$ illuminating because you really have

NOTE Confidence: 0.825611378

 $00:24:51.040 \longrightarrow 00:24:55.919$ very tight control over over the system.

NOTE Confidence: 0.825611378

 $00:24:55.920 \longrightarrow 00:24:58.688$ And what we see is that we get

NOTE Confidence: 0.825611378

 $00:24:58.688 \longrightarrow 00:25:00.717$ differentiation when we degrade the

NOTE Confidence: 0.825611378

00:25:00.717 --> 00:25:02.822 mutant onca protein and ultimately

NOTE Confidence: 0.825611378

 $00:25:02.822 \longrightarrow 00:25:04.957$ apoptosis of the cells as well.

NOTE Confidence: 0.825611378

00:25:04.960 --> 00:25:07.080 And this is just the Western blot looking.

NOTE Confidence: 0.825611378

 $00{:}25{:}07.080 \dashrightarrow 00{:}25{:}08.790$ We can actually separate the mutant

NOTE Confidence: 0.825611378

 $00:25:08.790 \longrightarrow 00:25:10.613$ protein from the wild type because

NOTE Confidence: 0.825611378

 $00{:}25{:}10.613 --> 00{:}25{:}11.239 \text{ it's tagged,}$

NOTE Confidence: 0.825611378

 $00:25:11.240 \longrightarrow 00:25:13.960$ it's here and you can see that here.

NOTE Confidence: 0.825611378

 $00:25:13.960 \longrightarrow 00:25:15.480$ This is the cytoplasmic prep,

NOTE Confidence: 0.825611378

 $00:25:15.480 \longrightarrow 00:25:17.256$ the nuclear prep and the chromatin

NOTE Confidence: 0.825611378

 $00:25:17.256 \longrightarrow 00:25:19.444$ prep and here's the mutant in PM one

NOTE Confidence: 0.825611378

 $00:25:19.444 \longrightarrow 00:25:21.211$ and we can control that by degrading

00:25:21.211 --> 00:25:23.283 it to show that that signal actually

NOTE Confidence: 0.825611378

 $00:25:23.283 \longrightarrow 00:25:24.720$ is what we think it is.

NOTE Confidence: 0.825611378

 $00:25:24.720 \longrightarrow 00:25:26.500$ And in fact there is a fair amount

NOTE Confidence: 0.825611378

00:25:26.500 --> 00:25:28.356 of the mutant in PM one in the

NOTE Confidence: 0.825611378

 $00:25:28.413 \longrightarrow 00:25:29.580$ nucleus and on chromatin.

NOTE Confidence: 0.825611378

 $00:25:29.580 \longrightarrow 00:25:31.721$ Then if we do chip seek to say

NOTE Confidence: 0.825611378

 $00:25:31.721 \longrightarrow 00:25:33.541$ where is it in the nucleus and

NOTE Confidence: 0.825611378

 $00{:}25{:}33.541 \dashrightarrow 00{:}25{:}35.597$ where are where is it on chromatin.

NOTE Confidence: 0.825611378

 $00:25:35.600 \longrightarrow 00:25:38.640$ You can see here with with two different

NOTE Confidence: 0.825611378

00:25:38.640 --> 00:25:41.720 antibodies in black that the NPM one mutant,

NOTE Confidence: 0.825611378

 $00{:}25{:}41.720 \dashrightarrow 00{:}25{:}43.820$ NPM one protein is bound to many

NOTE Confidence: 0.825611378

 $00:25:43.820 \longrightarrow 00:25:45.867$ of the similar genes that we've

NOTE Confidence: 0.825611378

00:25:45.867 --> 00:25:48.033 learned about with the MLL fusion,

NOTE Confidence: 0.825611378

 $00:25:48.040 \longrightarrow 00:25:50.000$ the Hox cluster MIS one.

NOTE Confidence: 0.825611378

 $00:25:50.000 \longrightarrow 00:25:52.439$ And when we degrade it that signal goes away.

00:25:52.440 --> 00:25:53.886 And I keep saying that because

NOTE Confidence: 0.825611378

 $00{:}25{:}53.886 \dashrightarrow 00{:}25{:}55.400$ particularly with chip seek experiments,

NOTE Confidence: 0.825611378

 $00:25:55.400 \longrightarrow 00:25:57.045$ the opportunity for background signal

NOTE Confidence: 0.825611378

 $00:25:57.045 \longrightarrow 00:25:59.692$ is real and this is makes you feel

NOTE Confidence: 0.825611378

00:25:59.692 --> 00:26:01.564 much better that the signal that

NOTE Confidence: 0.825611378

 $00:26:01.564 \longrightarrow 00:26:03.528$ you're looking at is indeed the

NOTE Confidence: 0.825611378

 $00:26:03.528 \longrightarrow 00:26:05.368$ signal that you are interested in.

NOTE Confidence: 0.825611378

00:26:05.368 --> 00:26:07.352 And now you actually can go to primary

NOTE Confidence: 0.825611378

 $00{:}26{:}07.352 \longrightarrow 00{:}26{:}08.789$ patient samples with those antibodies

NOTE Confidence: 0.825611378

00:26:08.789 --> 00:26:10.808 and see the NPM one protein mutant

NOTE Confidence: 0.825611378

 $00:26:10.808 \longrightarrow 00:26:12.677$ NPM one protein bound there as well.

NOTE Confidence: 0.825611378

 $00:26:12.680 \longrightarrow 00:26:14.528$ And here's the list of the top 50

NOTE Confidence: 0.825611378

 $00:26:14.528 \longrightarrow 00:26:16.564$ or so genes to which the mutant

NOTE Confidence: 0.825611378

 $00:26:16.564 \longrightarrow 00:26:18.074$ NPM one protein is bound.

NOTE Confidence: 0.825611378

 $00:26:18.080 \longrightarrow 00:26:19.898$ And you can see as some of these genes

NOTE Confidence: 0.825611378

00:26:19.898 --> 00:26:21.518 that I've already talked about OX,

00:26:21.520 --> 00:26:23.776 A&B cluster and a number of other

genes

NOTE Confidence: 0.825611378

 $00:26:23.776 \longrightarrow 00:26:26.128$ that we tend to pay attention to and

NOTE Confidence: 0.825611378

 $00{:}26{:}26.128 \dashrightarrow 00{:}26{:}28.756$ stare at when we're talking about MLL or

NOTE Confidence: 0.825611378

 $00:26:28.756 \longrightarrow 00:26:32.600$ looking at MLL rearranged leukemias as well.

NOTE Confidence: 0.825611378 00:26:32.600 --> 00:26:34.120 So, NOTE Confidence: 0.825611378

 $00:26:34.120 \longrightarrow 00:26:36.040$ but is it controlling gene expression.

NOTE Confidence: 0.825611378

 $00:26:36.040 \longrightarrow 00:26:37.855$ So now we have mutant

NOTE Confidence: 0.825611378

 $00:26:37.855 \longrightarrow 00:26:39.670$ NPM one protein bound to

NOTE Confidence: 0.829681794

 $00:26:39.753 \longrightarrow 00:26:42.358$ interesting sites in on chromatin

NOTE Confidence: 0.829681794

 $00:26:42.360 \longrightarrow 00:26:44.418$ and we can degrade it and show

NOTE Confidence: 0.829681794

 $00:26:44.418 \longrightarrow 00:26:46.120$ that that signal is specific.

NOTE Confidence: 0.829681794

00:26:46.120 --> 00:26:48.118 And now what happens to transcription?

NOTE Confidence: 0.829681794

 $00:26:48.120 \longrightarrow 00:26:49.800$ So this was 24 hours later,

NOTE Confidence: 0.829681794

 $00:26:49.800 \longrightarrow 00:26:50.800$ quite a bit later.

NOTE Confidence: 0.829681794

 $00:26:50.800 \longrightarrow 00:26:52.927$ Most of those genes that I just showed

00:26:52.927 --> 00:26:55.191 you where the NPM one protein is bound,

NOTE Confidence: 0.829681794

 $00{:}26{:}55.200 \dashrightarrow 00{:}26{:}56.750$ their expression is down and

NOTE Confidence: 0.829681794

 $00:26:56.750 \longrightarrow 00:26:58.620$ this is an approach called pro

NOTE Confidence: 0.829681794

00:26:58.620 --> 00:27:00.433 seek which I won't get into the

NOTE Confidence: 0.829681794

 $00:27:00.433 \longrightarrow 00:27:02.200$ details as to how one does this.

NOTE Confidence: 0.829681794

00:27:02.200 --> 00:27:02.884 So many of you,

NOTE Confidence: 0.829681794

 $00:27:02.884 \longrightarrow 00:27:04.331$ some of you who work on transcription

NOTE Confidence: 0.829681794

 $00:27:04.331 \longrightarrow 00:27:05.839$ probably know this technique.

NOTE Confidence: 0.829681794

 $00:27:05.840 \longrightarrow 00:27:07.685$ But essentially it measures the

NOTE Confidence: 0.829681794

 $00{:}27{:}07.685 \dashrightarrow 00{:}27{:}10.118$ amount of bound RNA polymerase 2 out

NOTE Confidence: 0.829681794

00:27:10.118 --> 00:27:12.214 throughout the length of the gene as a

NOTE Confidence: 0.829681794

 $00:27:12.276 \longrightarrow 00:27:14.600$ surrogate for transcriptional activity.

NOTE Confidence: 0.829681794

 $00{:}27{:}14.600 \dashrightarrow 00{:}27{:}16.632$ And what we can see that as quickly

NOTE Confidence: 0.829681794

 $00:27:16.632 \longrightarrow 00:27:18.952$ as 30 minutes after treatment of the

NOTE Confidence: 0.829681794

 $00:27:18.952 \longrightarrow 00:27:21.528$ cells with the NPM one protein degrader,

 $00:27:21.528 \longrightarrow 00:27:23.820$ you're already seeing a decrease in

NOTE Confidence: 0.829681794

 $00{:}27{:}23.892 \dashrightarrow 00{:}27{:}25.802$ transcription at those sites where

NOTE Confidence: 0.829681794

 $00{:}27{:}25.802 \dashrightarrow 00{:}27{:}28.160$ the NPM one was previously bound.

NOTE Confidence: 0.829681794

 $00:27:28.160 \longrightarrow 00:27:30.184$ And and if you look at it across

NOTE Confidence: 0.829681794

 $00:27:30.184 \longrightarrow 00:27:31.760$ the the all express genes

NOTE Confidence: 0.829681794

 $00:27:31.760 \longrightarrow 00:27:33.080$ you don't see those changes.

NOTE Confidence: 0.829681794

 $00:27:33.080 \longrightarrow 00:27:37.300$ So in fact it's the NPM one protein's

NOTE Confidence: 0.829681794

 $00:27:37.300 \longrightarrow 00:27:40.000$ bound there and somehow controlling

NOTE Confidence: 0.829681794

 $00{:}27{:}40.000 \dashrightarrow 00{:}27{:}42.400$ transcription of these genes.

NOTE Confidence: 0.829681794

00:27:42.400 --> 00:27:43.996 And one of the ways it's doing

NOTE Confidence: 0.829681794

 $00{:}27{:}43.996 \to 00{:}27{:}45.919$ it is by keeping RNA Pol two,

NOTE Confidence: 0.829681794

 $00{:}27{:}45.920 \dashrightarrow 00{:}27{:}47.744$ CK nine that that super elongation

NOTE Confidence: 0.829681794

 $00:27:47.744 \longrightarrow 00:27:50.396$ complex that I told you is critical for

NOTE Confidence: 0.829681794

 $00:27:50.396 \longrightarrow 00:27:52.116$ transcription bound to those genes.

NOTE Confidence: 0.829681794

 $00:27:52.120 \longrightarrow 00:27:54.066$ So when we treat with the degrader

NOTE Confidence: 0.829681794

00:27:54.066 --> 00:27:56.356 NPM one comes off and then much

 $00:27:56.356 \longrightarrow 00:27:57.748$ of the transcriptional apparatus

NOTE Confidence: 0.829681794

 $00:27:57.748 \longrightarrow 00:27:59.840$ comes off of those genes as well.

NOTE Confidence: 0.829681794

00:27:59.840 --> 00:28:03.445 So it's maintaining a state that allows

NOTE Confidence: 0.829681794

 $00:28:03.445 \longrightarrow 00:28:06.232$ for those critical complexes including

NOTE Confidence: 0.829681794

 $00:28:06.232 \longrightarrow 00:28:09.437$ pole two to to bind to those low side.

NOTE Confidence: 0.829681794

 $00{:}28{:}09.440 \to 00{:}28{:}11.920$ I'm going to go through the details of

NOTE Confidence: 0.829681794

 $00:28:11.920 \longrightarrow 00:28:14.550$ this but just to kind of summarize it

NOTE Confidence: 0.829681794

00:28:14.550 --> 00:28:17.037 that when we degrade mutant in PM one,

NOTE Confidence: 0.829681794

 $00{:}28{:}17.040 \dashrightarrow 00{:}28{:}19.104$ we lose RNA polymerase two occupancy

NOTE Confidence: 0.829681794

00:28:19.104 --> 00:28:21.309 where the NPM one was previously

NOTE Confidence: 0.829681794

 $00:28:21.309 \longrightarrow 00:28:22.837$ bound within an hour.

NOTE Confidence: 0.829681794

 $00:28:22.840 \longrightarrow 00:28:24.120$ So off goes NPM one,

NOTE Confidence: 0.829681794

 $00{:}28{:}24.120 \dashrightarrow 00{:}28{:}26.486$ off comes pole two and a number

NOTE Confidence: 0.829681794

 $00:28:26.486 \longrightarrow 00:28:28.206$ of other histone modifications

NOTE Confidence: 0.829681794

00:28:28.206 --> 00:28:29.492 like H3K27 acceleration,

 $00:28:29.492 \longrightarrow 00:28:31.853$ some of you know associated with various

NOTE Confidence: 0.829681794

 $00{:}28{:}31.853 \dashrightarrow 00{:}28{:}33.608$ types of gene expression decreases

NOTE Confidence: 0.829681794

00:28:33.608 --> 00:28:35.679 and then the histone modification,

NOTE Confidence: 0.829681794

 $00:28:35.680 \longrightarrow 00:28:37.500$ other histone modifications start

NOTE Confidence: 0.829681794

 $00:28:37.500 \longrightarrow 00:28:39.320$ to decrease somewhat later.

NOTE Confidence: 0.829681794

 $00:28:39.320 \longrightarrow 00:28:41.119$ For those of you interested in transcription,

NOTE Confidence: 0.829681794

00:28:41.120 --> 00:28:43.478 we can talk more about this in detail later,

NOTE Confidence: 0.829681794

 $00:28:43.480 \longrightarrow 00:28:45.160$ but it looks like it's like when

NOTE Confidence: 0.829681794

00:28:45.160 --> 00:28:46.800 we degrade the mutant in PM one,

NOTE Confidence: 0.829681794

 $00:28:46.800 \longrightarrow 00:28:48.325$ the decrease in gene expression

NOTE Confidence: 0.829681794

00:28:48.325 --> 00:28:49.240 is actually biphasic.

NOTE Confidence: 0.829681794

 $00:28:49.240 \longrightarrow 00:28:51.742$ There's so initially there's a decrease

NOTE Confidence: 0.829681794

 $00:28:51.742 \longrightarrow 00:28:54.960$ of about 50% probably because pole 2

NOTE Confidence: 0.829681794

 $00:28:54.960 \longrightarrow 00:28:58.216$ is not quite as there's not as much

NOTE Confidence: 0.829681794

 $00:28:58.216 \longrightarrow 00:29:00.160$ pull two and other complex occupancy.

NOTE Confidence: 0.829681794

 $00:29:00.160 \longrightarrow 00:29:02.330$ And then after about 3 days we

 $00:29:02.330 \longrightarrow 00:29:04.369$ see a dramatic another dramatic

NOTE Confidence: 0.829681794

 $00:29:04.369 \longrightarrow 00:29:06.437$ decrease in gene expression.

NOTE Confidence: 0.829681794

 $00:29:06.440 \longrightarrow 00:29:09.458$ We think that's because now the

NOTE Confidence: 0.829681794

 $00:29:09.458 \longrightarrow 00:29:11.470$ histone modifications are starting

NOTE Confidence: 0.829681794

00:29:11.548 --> 00:29:13.574 to come in and and work together

NOTE Confidence: 0.829681794

 $00:29:13.574 \longrightarrow 00:29:15.209$ with whatever the previous mechanism

NOTE Confidence: 0.829681794

 $00:29:15.209 \longrightarrow 00:29:17.439$ was to fully shut off transcription.

NOTE Confidence: 0.971745945

 $00:29:19.640 \longrightarrow 00:29:23.280$ So how does this connect to to Menon?

NOTE Confidence: 0.9037175 00:29:26.280 --> 00:29:27.320 So

NOTE Confidence: 0.861922117692308

 $00:29:30.880 \longrightarrow 00:29:33.480$ there we go. So we now if you

NOTE Confidence: 0.861922117692308

 $00:29:33.480 \longrightarrow 00:29:35.680$ treat with the MIN inhibitor,

NOTE Confidence: 0.861922117692308

 $00:29:35.680 \longrightarrow 00:29:38.774$ what happens to this chromatin bound in

NOTE Confidence: 0.861922117692308

00:29:38.774 --> 00:29:41.832 mutant in PM one and I'll just quickly

NOTE Confidence: 0.861922117692308

 $00:29:41.832 \longrightarrow 00:29:44.591$ summarize it by saying you can see here

NOTE Confidence: 0.861922117692308

00:29:44.591 --> 00:29:46.934 here's the mutant in PM one we treat

 $00:29:46.934 \longrightarrow 00:29:48.536$ with the MIN inhibitor doesn't come

NOTE Confidence: 0.861922117692308

 $00:29:48.536 \longrightarrow 00:29:50.327$ off the hogs locus but it actually

NOTE Confidence: 0.861922117692308

00:29:50.327 --> 00:29:52.418 does come off of the mis one locus

NOTE Confidence: 0.861922117692308

00:29:52.418 --> 00:29:54.357 exactly where we're seeing MLL come off,

NOTE Confidence: 0.861922117692308

 $00:29:54.360 \longrightarrow 00:29:56.696$ same thing down here and if you compare

NOTE Confidence: 0.861922117692308

 $00:29:56.696 \longrightarrow 00:29:59.085$ that the gene expression again those are

NOTE Confidence: 0.861922117692308

 $00:29:59.085 \longrightarrow 00:30:01.560$ the genes that are losing expression.

NOTE Confidence: 0.861922117692308

 $00:30:01.560 \longrightarrow 00:30:04.232$ So to summarize what I'm saying here is

NOTE Confidence: 0.861922117692308

 $00:30:04.232 \dashrightarrow 00:30:07.266$ that when we degrade the mutant NPM one

NOTE Confidence: 0.861922117692308

00:30:07.266 --> 00:30:09.480 protein with this degrader molecule,

NOTE Confidence: 0.861922117692308

 $00{:}30{:}09.480 \dashrightarrow 00{:}30{:}12.272$ we lose RNA pole two CDK 9 and

NOTE Confidence: 0.861922117692308

 $00:30:12.272 \longrightarrow 00:30:14.159$ ultimately .1 at those loci.

NOTE Confidence: 0.861922117692308

 $00:30:14.160 \longrightarrow 00:30:16.408$ When we treat with the min inhibitor we

NOTE Confidence: 0.861922117692308

 $00:30:16.408 \longrightarrow 00:30:18.921$ do the same thing but at a subset of

NOTE Confidence: 0.861922117692308

 $00:30:18.921 \longrightarrow 00:30:21.079$ the loci where the NPM one is bound.

NOTE Confidence: 0.861922117692308

 $00:30:21.080 \dashrightarrow 00:30:23.504$ So very similar to what's happening

 $00:30:23.504 \longrightarrow 00:30:25.120$ with the MLL fusion.

NOTE Confidence: 0.861922117692308

00:30:25.120 --> 00:30:27.696 However, we're now looking to see if

NOTE Confidence: 0.861922117692308

 $00:30:27.696 \longrightarrow 00:30:29.760$ indeed the mechanisms are identical.

NOTE Confidence: 0.861922117692308

 $00:30:29.760 \longrightarrow 00:30:31.482$ And it turns out that while some

NOTE Confidence: 0.861922117692308

00:30:31.482 --> 00:30:33.079 of the complexes are overlapping,

NOTE Confidence: 0.861922117692308

 $00:30:33.080 \longrightarrow 00:30:35.380$ these are the mechanisms are

NOTE Confidence: 0.861922117692308

 $00:30:35.380 \longrightarrow 00:30:36.656$ not perfectly identical.

NOTE Confidence: 0.861922117692308 00:30:36.656 --> 00:30:37.472 That is,

NOTE Confidence: 0.861922117692308

00:30:37.472 --> 00:30:39.104 some complexes are important

NOTE Confidence: 0.861922117692308

 $00:30:39.104 \longrightarrow 00:30:40.679$ in the MLO fusion,

NOTE Confidence: 0.861922117692308

 $00:30:40.680 \longrightarrow 00:30:42.437$ not an NPM one and vice versa.

NOTE Confidence: 0.861922117692308

 $00:30:42.440 \longrightarrow 00:30:44.565$ So we're trying to work through those

NOTE Confidence: 0.861922117692308

 $00{:}30{:}44.565 \dashrightarrow 00{:}30{:}46.515$ details because as you can imagine,

NOTE Confidence: 0.861922117692308

 $00{:}30{:}46.520 \dashrightarrow 00{:}30{:}48.072$ the next step that we want to do

NOTE Confidence: 0.861922117692308

 $00:30:48.072 \longrightarrow 00:30:50.077$ is come in and target some of these

 $00:30:50.077 \longrightarrow 00:30:51.464$ other complexes with small molecules.

NOTE Confidence: 0.861922117692308

 $00{:}30{:}51.464 \dashrightarrow 00{:}30{:}53.192$ So to summarize this part before,

NOTE Confidence: 0.861922117692308

 $00:30:53.200 \longrightarrow 00:30:56.315$ now I move to the clinical translation.

NOTE Confidence: 0.861922117692308

 $00:30:56.320 \longrightarrow 00:30:58.512$ There are a subset of leukemias that have

NOTE Confidence: 0.861922117692308

00:30:58.512 --> 00:31:00.600 high level Hox gene expression MIS one,

NOTE Confidence: 0.861922117692308

 $00:31:00.600 \longrightarrow 00:31:02.439$ another transcription factor

NOTE Confidence: 0.861922117692308

 $00:31:02.439 \longrightarrow 00:31:04.278$ called PBX three.

NOTE Confidence: 0.861922117692308

 $00:31:04.280 \longrightarrow 00:31:06.000$ This actually accounts for about

NOTE Confidence: 0.861922117692308

 $00:31:06.000 \longrightarrow 00:31:09.773$ 40% of human AML and it's ones

NOTE Confidence: 0.861922117692308

00:31:09.773 --> 00:31:13.040 with these genetic abnormalities,

NOTE Confidence: 0.861922117692308

00:31:13.040 --> 00:31:14.284 MLO rearrangement,

NOTE Confidence: 0.861922117692308

 $00{:}31{:}14.284 \dashrightarrow 00{:}31{:}18.638$ NPM 1 mutation and I'm actually more

NOTE Confidence: 0.861922117692308

 $00:31:18.640 \longrightarrow 00:31:21.094$ relatively rare but more common than

NOTE Confidence: 0.861922117692308

 $00:31:21.094 \longrightarrow 00:31:23.580$ in adults rearrangement called Newt 98

NOTE Confidence: 0.861922117692308

00:31:23.580 --> 00:31:25.920 rearrangements in both pediatric and adult.

NOTE Confidence: 0.861922117692308

 $00:31:25.920 \longrightarrow 00:31:28.292$ So again accounting for

 $00:31:28.292 \longrightarrow 00:31:31.080$ about 40% of patients.

NOTE Confidence: 0.861922117692308

 $00:31:31.080 \longrightarrow 00:31:35.236$ So that all while all that was happening,

NOTE Confidence: 0.861922117692308

 $00:31:35.240 \longrightarrow 00:31:37.340$ Syndax and another company called cure

NOTE Confidence: 0.861922117692308

00:31:37.340 --> 00:31:39.680 oncology that many of you know about,

NOTE Confidence: 0.861922117692308

 $00:31:39.680 \longrightarrow 00:31:41.572$ we're developing small molecules

NOTE Confidence: 0.861922117692308

 $00:31:41.572 \longrightarrow 00:31:43.720$ here Syndax 5613 and here Cure's

NOTE Confidence: 0.841225401818182

 $00:31:45.760 \longrightarrow 00:31:47.430$ what's now Zyftominib and these

NOTE Confidence: 0.841225401818182

 $00:31:47.430 \longrightarrow 00:31:49.480$ I'll show you some of this,

NOTE Confidence: 0.841225401818182

 $00:31:49.480 \longrightarrow 00:31:51.604$ the data from the Cindex trial

NOTE Confidence: 0.841225401818182

 $00{:}31{:}51.604 \dashrightarrow 00{:}31{:}53.840$ and some mechanism of resistance.

NOTE Confidence: 0.841225401818182

 $00:31:53.840 \longrightarrow 00:31:56.060$ And as I mentioned essentially

NOTE Confidence: 0.841225401818182

 $00:31:56.060 \longrightarrow 00:31:59.120$ when the NPM one story came out,

NOTE Confidence: 0.841225401818182

 $00{:}31{:}59.120 \dashrightarrow 00{:}32{:}01.087$ we were called by Janssen and actually

NOTE Confidence: 0.841225401818182

 $00:32:01.087 \longrightarrow 00:32:02.629$ another couple of other pharmaceutical

NOTE Confidence: 0.841225401818182

 $00:32:02.629 \longrightarrow 00:32:04.555$ companies and at least these three

 $00:32:04.555 \longrightarrow 00:32:06.240$ now have MIN inhibitors that are

NOTE Confidence: 0.841225401818182

 $00{:}32{:}06.240 \dashrightarrow 00{:}32{:}08.462$ right on the tails if you will of

NOTE Confidence: 0.841225401818182

00:32:08.462 --> 00:32:10.908 the cure of development and Cindex.

NOTE Confidence: 0.841225401818182

 $00:32:10.908 \longrightarrow 00:32:15.024$ So this is so now we're into

NOTE Confidence: 0.841225401818182

 $00:32:15.024 \longrightarrow 00:32:17.246$ patients with the Syndex 5613.

NOTE Confidence: 0.841225401818182

00:32:17.246 --> 00:32:18.944 This is just date some of

NOTE Confidence: 0.841225401818182

 $00:32:18.944 \longrightarrow 00:32:20.718$ the data from the phase one.

NOTE Confidence: 0.841225401818182

 $00:32:20.720 \longrightarrow 00:32:23.408$ This is one of the first patients

NOTE Confidence: 0.841225401818182

 $00:32:23.408 \longrightarrow 00:32:25.780$ that was treated at Dana Farber and

NOTE Confidence: 0.841225401818182

 $00:32:25.780 \longrightarrow 00:32:27.320$ we were able to get the peripheral

NOTE Confidence: 0.841225401818182

 $00:32:27.364 \longrightarrow 00:32:28.636$ blood and here are the blast.

NOTE Confidence: 0.841225401818182

 $00:32:28.640 \longrightarrow 00:32:30.635$ And you can see this is with

NOTE Confidence: 0.841225401818182

 $00:32:30.635 \longrightarrow 00:32:31.706$ Revumenib that day three,

NOTE Confidence: 0.841225401818182

 $00:32:31.706 \longrightarrow 00:32:32.754$ not much has happened.

NOTE Confidence: 0.841225401818182

 $00:32:32.760 \longrightarrow 00:32:35.084$ Day seven start to see a decrease

NOTE Confidence: 0.841225401818182

 $00:32:35.084 \longrightarrow 00:32:36.080$ in peripheral blast,

 $00:32:36.080 \longrightarrow 00:32:38.592$ day 14 further decrease and by day 30

NOTE Confidence: 0.841225401818182

 $00{:}32{:}38.592 \dashrightarrow 00{:}32{:}40.980$ at least the peripheral blood blasts

NOTE Confidence: 0.841225401818182

 $00:32:40.980 \longrightarrow 00:32:43.518$ are in this case essentially gone.

NOTE Confidence: 0.841225401818182

 $00:32:43.520 \longrightarrow 00:32:45.075$ Florian Perner is a postdoc

NOTE Confidence: 0.841225401818182

 $00:32:45.075 \longrightarrow 00:32:46.319$ who was doing this.

NOTE Confidence: 0.841225401818182

 $00:32:46.320 \longrightarrow 00:32:48.036$ He sorted these cells and looked

NOTE Confidence: 0.841225401818182

 $00:32:48.036 \longrightarrow 00:32:50.045$ at gene expression and in fact the

NOTE Confidence: 0.841225401818182

 $00{:}32{:}50.045 \dashrightarrow 00{:}32{:}51.665$ gene expression changes that we see

NOTE Confidence: 0.841225401818182

 $00{:}32{:}51.665 \dashrightarrow 00{:}32{:}53.434$ here look very similar to what we

NOTE Confidence: 0.841225401818182

 $00{:}32{:}53.434 \dashrightarrow 00{:}32{:}55.856$ had seen in the preclinical studies

NOTE Confidence: 0.841225401818182

 $00:32:55.856 \longrightarrow 00:32:58.276$ not being a clinical trialist.

NOTE Confidence: 0.841225401818182

 $00:32:58.280 \longrightarrow 00:33:00.152$ I'm going to summarize the whole

NOTE Confidence: 0.841225401818182

 $00{:}33{:}00.152 \dashrightarrow 00{:}33{:}02.149$ phase one right here with a lot

NOTE Confidence: 0.841225401818182

00:33:02.149 --> 00:33:04.233 of work from a lot of people and

NOTE Confidence: 0.841225401818182

 $00:33:04.233 \longrightarrow 00:33:06.598$ this was published last year.

 $00:33:06.600 \longrightarrow 00:33:08.520$ This is the Revue Minib Phase

NOTE Confidence: 0.841225401818182

 $00:33:08.520 \longrightarrow 00:33:10.010$ one with Syndex 5613.

NOTE Confidence: 0.841225401818182

 $00:33:10.010 \longrightarrow 00:33:11.960$ The other name for it,

NOTE Confidence: 0.841225401818182

 $00:33:11.960 \longrightarrow 00:33:14.520$ 68 patients with relapsed

NOTE Confidence: 0.841225401818182

00:33:14.520 --> 00:33:15.800 refractory leukemia.

NOTE Confidence: 0.841225401818182

00:33:15.800 --> 00:33:17.152 As you probably know,

NOTE Confidence: 0.841225401818182

00:33:17.152 --> 00:33:19.180 many of these patients have had

NOTE Confidence: 0.841225401818182

00:33:19.245 --> 00:33:21.220 tremendous numbers of cycles of

NOTE Confidence: 0.841225401818182

 $00:33:21.220 \longrightarrow 00:33:23.558$ various types of therapies and the

NOTE Confidence: 0.841225401818182

00:33:23.558 --> 00:33:25.609 CR rate depending on how you count

NOTE Confidence: 0.841225401818182

 $00{:}33{:}25.609 \dashrightarrow 00{:}33{:}27.364$ CRS and for those of you who do

NOTE Confidence: 0.841225401818182

 $00:33:27.364 \longrightarrow 00:33:28.979$ clinical trials and A and all we can

NOTE Confidence: 0.841225401818182

 $00{:}33{:}28.979 \dashrightarrow 00{:}33{:}30.369$ talk about that is somewhere in the

NOTE Confidence: 0.841225401818182

 $00:33:30.369 \longrightarrow 00:33:32.495 40\%$ range with an overall response

NOTE Confidence: 0.841225401818182

00:33:32.495 --> 00:33:35.013 rate of about 50% and a median

NOTE Confidence: 0.841225401818182

 $00:33:35.013 \longrightarrow 00:33:36.879$ duration of response about nine months.

 $00:33:36.880 \longrightarrow 00:33:39.400$ So for in relapse refractory setting,

NOTE Confidence: 0.841225401818182

 $00:33:39.400 \longrightarrow 00:33:41.810$ these are actually pretty impressive

NOTE Confidence: 0.841225401818182

 $00:33:41.810 \longrightarrow 00:33:44.220$ numbers and the cure oncology

NOTE Confidence: 0.841225401818182

 $00:33:44.293 \longrightarrow 00:33:46.921$ small molecule seems to be doing

NOTE Confidence: 0.841225401818182

 $00:33:46.921 \longrightarrow 00:33:48.287$ something having similar activity.

NOTE Confidence: 0.841225401818182

00:33:48.287 --> 00:33:50.823 And in fact some of that data from

NOTE Confidence: 0.841225401818182

 $00:33:50.823 \longrightarrow 00:33:52.707$ Janssen was also just printed presented

NOTE Confidence: 0.841225401818182

 $00:33:52.707 \longrightarrow 00:33:55.115$ at ASH and it looks like the activity

NOTE Confidence: 0.841225401818182

 $00:33:55.115 \longrightarrow 00:33:56.991$ of that molecule is is similar.

NOTE Confidence: 0.841225401818182

00:33:56.991 --> 00:33:59.346 So indeed there looks like

NOTE Confidence: 0.841225401818182

 $00:33:59.346 \longrightarrow 00:34:00.759$ there's significant clinical

NOTE Confidence: 0.841225401818182

 $00:34:00.759 \longrightarrow 00:34:02.400$ activity of this approach.

NOTE Confidence: 0.841225401818182

 $00{:}34{:}02.400 \dashrightarrow 00{:}34{:}05.200$ This lot slide just reminds me to

NOTE Confidence: 0.841225401818182

00:34:05.200 --> 00:34:07.686 point out and and then now I'm talking

NOTE Confidence: 0.841225401818182

 $00:34:07.686 \longrightarrow 00:34:09.878$ to people who are doing AML clinical

 $00:34:09.878 \longrightarrow 00:34:11.876$ trials in the in the audience.

NOTE Confidence: 0.841225401818182

 $00:34:11.880 \longrightarrow 00:34:13.352$ An interesting phenomenon that

NOTE Confidence: 0.841225401818182

 $00:34:13.352 \longrightarrow 00:34:15.560$ you know better than I do,

NOTE Confidence: 0.841225401818182

 $00:34:15.560 \longrightarrow 00:34:17.246$ but that is influencing how these

NOTE Confidence: 0.841225401818182

 $00:34:17.246 \longrightarrow 00:34:19.249$ drugs are are able to be developed

NOTE Confidence: 0.841225401818182

 $00:34:19.249 \longrightarrow 00:34:21.174$ and that is when you treat patients

NOTE Confidence: 0.841225401818182

 $00:34:21.235 \longrightarrow 00:34:22.640$ with them in an inhibitor,

NOTE Confidence: 0.841225401818182

 $00:34:22.640 \longrightarrow 00:34:25.412$ many of them will develop this syndrome

NOTE Confidence: 0.841225401818182

 $00{:}34{:}25.412 \dashrightarrow 00{:}34{:}26.600$ called differentiation syndrome.

NOTE Confidence: 0.841225401818182

 $00:34:26.600 \longrightarrow 00:34:29.520$ But in this setting it looks a little

NOTE Confidence: 0.841225401818182

 $00{:}34{:}29.520 \dashrightarrow 00{:}34{:}30.880$ different clinically I'm told,

NOTE Confidence: 0.841225401818182

 $00:34:30.880 \longrightarrow 00:34:32.220$ than the differentiation syndrome

NOTE Confidence: 0.841225401818182

 $00:34:32.220 \longrightarrow 00:34:34.230$ that you usually see when you

NOTE Confidence: 0.841225401818182

 $00{:}34{:}34.286 \dashrightarrow 00{:}34{:}36.056$ treat patients with a cute per

NOTE Confidence: 0.841225401818182

 $00:34:36.056 \longrightarrow 00:34:37.472$ myelocytic leukemia with ATRA.

NOTE Confidence: 0.839965693333333

 $00:34:37.480 \longrightarrow 00:34:40.012$ In fact patients have died from

 $00:34:40.012 \longrightarrow 00:34:41.581$ this differentiation syndrome and

NOTE Confidence: 0.839965693333333

 $00:34:41.581 \longrightarrow 00:34:43.688$ so that has prompted the FDA to

NOTE Confidence: 0.839965693333333

 $00:34:43.688 \longrightarrow 00:34:46.040$ call this a dose limiting toxicity.

NOTE Confidence: 0.839965693333333

 $00:34:46.040 \longrightarrow 00:34:47.440$ Think about what that means.

NOTE Confidence: 0.839965693333333

00:34:47.440 --> 00:34:50.504 It means that your your dose limiting

NOTE Confidence: 0.839965693333333

 $00:34:50.504 \longrightarrow 00:34:53.079$ toxicity is actually occurring as a

NOTE Confidence: 0.839965693333333

 $00:34:53.079 \longrightarrow 00:34:55.677$ result of efficacy of your molecules.

NOTE Confidence: 0.839965693333333

00:34:55.680 --> 00:34:58.099 So we can talk about what So I think

NOTE Confidence: 0.839965693333333

00:34:58.099 --> 00:35:00.240 the FDA is fighting against the the

NOTE Confidence: 0.839965693333333

 $00:35:00.240 \longrightarrow 00:35:02.240$ the some things that they shouldn't be,

NOTE Confidence: 0.839965693333333

 $00:35:02.240 \longrightarrow 00:35:04.616$ but that's a that's a whole other soapbox

NOTE Confidence: 0.839965693333333

 $00:35:04.616 \dashrightarrow 00:35:07.035$ that we can talk about if we want to.

NOTE Confidence: 0.839965693333333

 $00{:}35{:}07.040 \dashrightarrow 00{:}35{:}08.392$ That would be like for those of you

NOTE Confidence: 0.839965693333333

 $00:35:08.392 \longrightarrow 00:35:09.711$ who treat patients with ALL saying you

NOTE Confidence: 0.839965693333333

 $00:35:09.711 \longrightarrow 00:35:11.479$ start to see a little tumor lysis syndrome,

 $00:35:11.480 \longrightarrow 00:35:12.630$ we'd better stop treating them

NOTE Confidence: 0.839965693333333

 $00:35:12.630 \longrightarrow 00:35:15.960$ because that's bad. No, that's good.

NOTE Confidence: 0.839965693333333

 $00:35:15.960 \longrightarrow 00:35:18.528$ So with all this in mind and the

NOTE Confidence: 0.839965693333333

 $00:35:18.528 \longrightarrow 00:35:20.519$ clinical activity looking interesting,

NOTE Confidence: 0.839965693333333

 $00:35:20.520 \longrightarrow 00:35:22.858$ we figured that it was much like

NOTE Confidence: 0.839965693333333

00:35:22.858 --> 00:35:24.320 any single targeted agent,

NOTE Confidence: 0.839965693333333

 $00:35:24.320 \longrightarrow 00:35:26.553$ there was likely to be some mechanism

NOTE Confidence: 0.839965693333333

 $00:35:26.553 \longrightarrow 00:35:28.758$ of resistance to that targeted agent.

NOTE Confidence: 0.839965693333333

 $00:35:28.760 \longrightarrow 00:35:31.000$ And right about the time we started

NOTE Confidence: 0.839965693333333

00:35:31.000 --> 00:35:33.166 thinking about this the Broad Institute

NOTE Confidence: 0.839965693333333

 $00:35:33.166 \longrightarrow 00:35:35.578$ developed this screening based on or

NOTE Confidence: 0.839965693333333

 $00:35:35.578 \longrightarrow 00:35:37.539$ screening approach based on single

NOTE Confidence: 0.839965693333333

 $00:35:37.539 \longrightarrow 00:35:40.293$ nucleotide base editing which in fact

NOTE Confidence: 0.839965693333333

 $00:35:40.293 \longrightarrow 00:35:43.972$ what you can do is tile in this case

NOTE Confidence: 0.839965693333333

 $00:35:43.972 \longrightarrow 00:35:46.744$ Menon the whole length of the gene

NOTE Confidence: 0.839965693333333

 $00:35:46.744 \longrightarrow 00:35:49.062$ with guides that will mutate not

 $00:35:49.062 \longrightarrow 00:35:50.874$ every nucleotide because of the way

NOTE Confidence: 0.839965693333333

 $00:35:50.874 \longrightarrow 00:35:52.920$ that it's designed but where you can

NOTE Confidence: 0.839965693333333

 $00:35:52.920 \longrightarrow 00:35:54.546$ mutate the majority of amino acids

NOTE Confidence: 0.839965693333333

00:35:54.599 --> 00:35:56.315 across the length of that protein

NOTE Confidence: 0.647701627142857

 $00:35:59.240 \longrightarrow 00:36:01.634$ to to basically do an in a

NOTE Confidence: 0.647701627142857

 $00{:}36{:}01.640 \dashrightarrow 00{:}36{:}03.005$ cellular mutagenesis screen

NOTE Confidence: 0.647701627142857

 $00:36:03.005 \longrightarrow 00:36:05.603$ to see if you can phenotypes.

NOTE Confidence: 0.647701627142857

 $00{:}36{:}05.603 \dashrightarrow 00{:}36{:}08.187$ So what Florian decided to do is to

NOTE Confidence: 0.647701627142857

 $00:36:08.187 \longrightarrow 00:36:10.313$ get that base editor library made

NOTE Confidence: 0.647701627142857

 $00:36:10.313 \longrightarrow 00:36:12.780$ for the minute gene treat cells with

NOTE Confidence: 0.647701627142857

 $00:36:12.780 \longrightarrow 00:36:15.775$ the min an inhibitor and see if there

NOTE Confidence: 0.647701627142857

 $00:36:15.775 \longrightarrow 00:36:18.157$ were mutations that made the cells

NOTE Confidence: 0.647701627142857

 $00{:}36{:}18.157 \dashrightarrow 00{:}36{:}20.517$ resistant to the min an inhibitor.

NOTE Confidence: 0.647701627142857

 $00:36:20.520 \longrightarrow 00:36:22.888$ And in fact there were there shown here

NOTE Confidence: 0.647701627142857

 $00:36:22.888 \longrightarrow 00:36:25.480$ in two different MLL rearranged lines

 $00:36:25.480 \longrightarrow 00:36:29.358$ and interestingly enough we we kind of

NOTE Confidence: 0.647701627142857

 $00:36:29.360 \longrightarrow 00:36:31.400$ looking back this was probably silly.

NOTE Confidence: 0.647701627142857

 $00:36:31.400 \longrightarrow 00:36:32.460$ We looked at this,

NOTE Confidence: 0.647701627142857

 $00:36:32.460 \longrightarrow 00:36:34.050$ the new technique and there's a

NOTE Confidence: 0.647701627142857

 $00:36:34.106 \longrightarrow 00:36:35.996$ little bit of noise and we didn't

NOTE Confidence: 0.647701627142857

 $00:36:35.996 \longrightarrow 00:36:37.678$ know exactly what to make of

NOTE Confidence: 0.647701627142857

 $00:36:37.678 \longrightarrow 00:36:39.033$ it looked kind of interesting.

NOTE Confidence: 0.647701627142857

00:36:39.040 --> 00:36:41.232 Florian put it in the drawer and kind

NOTE Confidence: 0.647701627142857

 $00:36:41.232 \longrightarrow 00:36:43.238$ of didn't do too much more with it

NOTE Confidence: 0.647701627142857

 $00:36:43.240 \longrightarrow 00:36:45.544$ until we got a call from Ross Levine

NOTE Confidence: 0.647701627142857

 $00{:}36{:}45.544 \dashrightarrow 00{:}36{:}48.359$ and Etan Stein at Memorial Sloan Kettering.

NOTE Confidence: 0.647701627142857 00:36:48.360 --> 00:36:48.619 Actually, NOTE Confidence: 0.647701627142857

 $00{:}36{:}48.619 \dashrightarrow 00{:}36{:}50.691$ I got a like emergent text from Ross

NOTE Confidence: 0.647701627142857

 $00:36:50.691 \longrightarrow 00:36:52.376$ which I thought something really bad

NOTE Confidence: 0.647701627142857

 $00:36:52.376 \longrightarrow 00:36:54.797$ had happened and he said we have to talk now.

NOTE Confidence: 0.647701627142857

 $00:36:54.800 \longrightarrow 00:36:57.232$ So I called him and he said we

 $00:36:57.232 \longrightarrow 00:36:59.421$ found mutations in Menin in samples

NOTE Confidence: 0.647701627142857

 $00:36:59.421 \longrightarrow 00:37:01.306$ from patients that have progressed

NOTE Confidence: 0.647701627142857

 $00:37:01.306 \longrightarrow 00:37:03.078$ on the Menin inhibitor.

NOTE Confidence: 0.647701627142857

00:37:03.080 --> 00:37:04.792 And great, you know,

NOTE Confidence: 0.647701627142857

 $00:37:04.792 \longrightarrow 00:37:06.076$ what are they?

NOTE Confidence: 0.647701627142857

 $00:37:06.080 \longrightarrow 00:37:08.456$ And in fact the first one was this

NOTE Confidence: 0.647701627142857

 $00:37:08.456 \longrightarrow 00:37:09.925$ mutation 3 and ine 349.

NOTE Confidence: 0.647701627142857

 $00:37:09.925 \longrightarrow 00:37:12.608$ So we dug Florian's data out and

NOTE Confidence: 0.647701627142857

 $00:37:12.608 \longrightarrow 00:37:13.600$ we're like holy cow,

NOTE Confidence: 0.647701627142857

 $00:37:13.600 \longrightarrow 00:37:15.808$ the patients are getting the same

NOTE Confidence: 0.647701627142857

00:37:15.808 --> 00:37:18.200 mutation that the base header screen

NOTE Confidence: 0.647701627142857

 $00:37:18.200 \longrightarrow 00:37:20.573$ had suggested they might get even though

NOTE Confidence: 0.647701627142857

 $00{:}37{:}20.573 \dashrightarrow 00{:}37{:}22.765$ we weren't confident in our in our data

NOTE Confidence: 0.647701627142857

 $00{:}37{:}22.765 \dashrightarrow 00{:}37{:}24.720$ to go ahead and start studying that.

NOTE Confidence: 0.647701627142857

00:37:24.720 --> 00:37:26.960 But Needless to say with that information,

 $00:37:26.960 \longrightarrow 00:37:29.544$ we started studying this in quite a bit

NOTE Confidence: 0.647701627142857

 $00:37:29.544 \longrightarrow 00:37:32.203$ of detail and we went to send X and

NOTE Confidence: 0.647701627142857

 $00:37:32.203 \longrightarrow 00:37:34.400$ got samples from a number of patients.

NOTE Confidence: 0.647701627142857

 $00:37:34.400 \longrightarrow 00:37:36.999$ And it looks like within two to

NOTE Confidence: 0.647701627142857

 $00:37:36.999 \longrightarrow 00:37:39.560$ three months about 40% of the

NOTE Confidence: 0.647701627142857

 $00:37:39.560 \longrightarrow 00:37:40.880$ patients had developed.

NOTE Confidence: 0.647701627142857

 $00:37:40.880 \longrightarrow 00:37:42.160$ They weren't in fluorid

NOTE Confidence: 0.647701627142857

 $00:37:42.160 \longrightarrow 00:37:43.120$ relapse or progression,

NOTE Confidence: 0.647701627142857

 $00:37:43.120 \longrightarrow 00:37:45.892$ but had developed a clone with

NOTE Confidence: 0.647701627142857

 $00:37:45.892 \longrightarrow 00:37:48.520$ this a min and mutation in them.

NOTE Confidence: 0.647701627142857

 $00{:}37{:}48.520 \dashrightarrow 00{:}37{:}50.123$ That's what this is showing here and

NOTE Confidence: 0.647701627142857

 $00:37:50.123 \longrightarrow 00:37:51.736$ here is like and those mutations

NOTE Confidence: 0.647701627142857

 $00:37:51.736 \longrightarrow 00:37:53.196$ were not present at screening.

NOTE Confidence: 0.647701627142857

 $00:37:53.200 \longrightarrow 00:37:54.816$ So this is just a pie chart in

NOTE Confidence: 0.647701627142857

 $00:37:54.816 \longrightarrow 00:37:56.627$ red here showing you the size of

NOTE Confidence: 0.647701627142857

 $00{:}37{:}56.627 \dashrightarrow 00{:}37{:}58.301$ the clone that has developed the

 $00:37:58.301 \longrightarrow 00:37:59.117$ min and mutation.

NOTE Confidence: 0.647701627142857

 $00:37:59.120 \longrightarrow 00:38:01.780$ So this is acquired selective

NOTE Confidence: 0.647701627142857

 $00:38:01.780 \longrightarrow 00:38:04.440$ mutational resistance to the men,

NOTE Confidence: 0.647701627142857

 $00:38:04.440 \longrightarrow 00:38:06.150$ an inhibitor which as most of

NOTE Confidence: 0.647701627142857

 $00:38:06.150 \longrightarrow 00:38:07.746$ you probably know is considered

NOTE Confidence: 0.647701627142857

 $00:38:07.746 \longrightarrow 00:38:09.716$ a validation of the therapeutic

NOTE Confidence: 0.647701627142857

 $00:38:09.716 \longrightarrow 00:38:11.995$ targeting the kinase world when this

NOTE Confidence: 0.647701627142857

00:38:11.995 --> 00:38:13.632 happens and essentially we think

NOTE Confidence: 0.647701627142857

 $00{:}38{:}13.632 \dashrightarrow 00{:}38{:}15.961$ it's saying the same thing here and

NOTE Confidence: 0.647701627142857

 $00:38:15.961 \dashrightarrow 00:38:18.353$ we found a both in patients with MLO

NOTE Confidence: 0.647701627142857

00:38:18.353 --> 00:38:20.000 rearranged an NPM one mutant AML.

NOTE Confidence: 0.647701627142857

 $00:38:20.000 \longrightarrow 00:38:21.799$ So this is the, if you will,

NOTE Confidence: 0.647701627142857

 $00{:}38{:}21.800 \dashrightarrow 00{:}38{:}24.290$ the gold standard for that validation

NOTE Confidence: 0.647701627142857

 $00{:}38{:}24.290 \dashrightarrow 00{:}38{:}26.453$ of a the rapeutic target in patients

NOTE Confidence: 0.647701627142857

 $00:38:26.453 \longrightarrow 00:38:28.797$ that that you put so much pressure

 $00:38:28.797 \longrightarrow 00:38:30.870$ on the target that the cancer mutates.

NOTE Confidence: 0.647701627142857

 $00{:}38{:}30.870 \dashrightarrow 00{:}38{:}33.075$ It's such that it's no longer effective.

NOTE Confidence: 0.647701627142857

 $00:38:33.080 \longrightarrow 00:38:35.117$ I'll show you why in a minute.

NOTE Confidence: 0.647701627142857

00:38:35.120 --> 00:38:37.280 And of course as most of you know,

NOTE Confidence: 0.647701627142857

 $00:38:37.280 \longrightarrow 00:38:39.368$ we can have to have combinations

NOTE Confidence: 0.647701627142857

 $00:38:39.368 \longrightarrow 00:38:41.029$ anyway and we were able to show that

NOTE Confidence: 0.647701627142857

 $00:38:41.029 \dashrightarrow 00:38:43.037$ we can do the same thing in PDX models.

NOTE Confidence: 0.71167688

 $00{:}38{:}43.040 \dashrightarrow 00{:}38{:}44.660$ So we take our MLL rearranged

NOTE Confidence: 0.71167688

00:38:44.660 --> 00:38:46.200 or NPM one mutant models,

NOTE Confidence: 0.71167688

 $00:38:46.200 \longrightarrow 00:38:48.671$ treat them with in an inhibitor and

NOTE Confidence: 0.71167688

 $00{:}38{:}48.671 \dashrightarrow 00{:}38{:}51.624$ in some cases but not all they will

NOTE Confidence: 0.71167688

00:38:51.624 --> 00:38:54.896 develop the mutations that we see in

NOTE Confidence: 0.71167688

 $00:38:54.896 \longrightarrow 00:38:56.760$ in the patients and mechanistically

NOTE Confidence: 0.71167688

 $00:38:56.760 \longrightarrow 00:38:58.720$ we we know how this is working.

NOTE Confidence: 0.71167688

 $00:38:58.720 \longrightarrow 00:39:00.560$ I won't go into all the details but

NOTE Confidence: 0.71167688

 $00:39:00.560 \longrightarrow 00:39:02.680$ this is just one chip seek experiment.

 $00{:}39{:}02.680 \dashrightarrow 00{:}39{:}04.507$ In the wild type setting you can

NOTE Confidence: 0.71167688

 $00:39:04.507 \longrightarrow 00:39:06.280$ see Menin comes off of chromatin,

NOTE Confidence: 0.71167688

 $00:39:06.280 \longrightarrow 00:39:08.086$ this is chip seek increase in

NOTE Confidence: 0.71167688

 $00:39:08.086 \longrightarrow 00:39:09.880$ concentrations of the Menin inhibitor.

NOTE Confidence: 0.71167688

 $00:39:09.880 \longrightarrow 00:39:12.280$ But if you have mutated Menin in that

NOTE Confidence: 0.71167688

 $00:39:12.280 \longrightarrow 00:39:14.160$ cell line, it no longer comes off.

NOTE Confidence: 0.71167688

00:39:14.160 --> 00:39:16.632 And we know now biochemically it's

NOTE Confidence: 0.71167688

 $00:39:16.632 \longrightarrow 00:39:19.105$ because the binding affinity of the

NOTE Confidence: 0.71167688

00:39:19.105 --> 00:39:21.000 Menin inhibitor has been shifted

NOTE Confidence: 0.71167688

 $00:39:21.000 \longrightarrow 00:39:23.299$ significantly as a result of those mutations.

NOTE Confidence: 0.71167688

00:39:23.299 --> 00:39:23.998 And in fact,

NOTE Confidence: 0.71167688

 $00:39:24.000 \longrightarrow 00:39:26.044$ we know this now at the crystal

NOTE Confidence: 0.71167688

 $00:39:26.044 \longrightarrow 00:39:27.566$ structure level and we know

NOTE Confidence: 0.71167688

 $00{:}39{:}27.566 \to 00{:}39{:}29.036$ exactly why that's the case.

NOTE Confidence: 0.71167688

 $00:39:29.040 \longrightarrow 00:39:32.316$ So here's revuminib bound to Menin.

 $00:39:32.320 \longrightarrow 00:39:34.720$ You can see over here on the right,

NOTE Confidence: 0.71167688

 $00:39:34.720 \longrightarrow 00:39:35.719$ these amino acids

NOTE Confidence: 0.958237584444445

00:39:38.520 --> 00:39:40.385 M327T349-G331, all these are mutations

NOTE Confidence: 0.958237584444445

 $00:39:40.385 \longrightarrow 00:39:43.840$ that have been found in patients.

NOTE Confidence: 0.958237584444445

 $00:39:43.840 \longrightarrow 00:39:45.264$ Interestingly enough,

NOTE Confidence: 0.958237584444445

00:39:45.264 --> 00:39:48.784 the wild type MLL protein does not

NOTE Confidence: 0.958237584444445

 $00:39:48.784 \longrightarrow 00:39:50.860$ use those amino acids to anchor

NOTE Confidence: 0.958237584444445

 $00:39:50.933 \longrightarrow 00:39:53.033$ and that's actually an important

NOTE Confidence: 0.9582375844444445

 $00{:}39{:}53.033 \dashrightarrow 00{:}39{:}55.133$ concept because if you develop

NOTE Confidence: 0.958237584444445

 $00:39:55.200 \longrightarrow 00:39:57.632$ the mutation that where men and

NOTE Confidence: 0.958237584444445

 $00{:}39{:}57.632 \dashrightarrow 00{:}40{:}00.080$ the MLL can no longer interact,

NOTE Confidence: 0.958237584444445

 $00:40:00.080 \longrightarrow 00:40:01.760$ those cells won't survive that.

NOTE Confidence: 0.958237584444445

 $00:40:01.760 \longrightarrow 00:40:03.128$ So that that that's not an

NOTE Confidence: 0.9582375844444445

 $00:40:03.128 \longrightarrow 00:40:04.040$ option for the cells.

NOTE Confidence: 0.958237584444445

00:40:04.040 --> 00:40:06.044 They have to mutate something that

NOTE Confidence: 0.958237584444445

 $00{:}40{:}06.044 \dashrightarrow 00{:}40{:}08.099$ doesn't affect MLL but does affect

 $00:40:08.099 \longrightarrow 00:40:10.073$ the the binding of the inhibitor.

NOTE Confidence: 0.958237584444445

 $00:40:10.080 \longrightarrow 00:40:12.400$ And in fact that's exactly what they've done.

NOTE Confidence: 0.958237584444445

00:40:12.400 --> 00:40:14.906 They've mutated this region of men and

NOTE Confidence: 0.958237584444445

00:40:14.906 --> 00:40:17.516 that has plays no role in MLL binding.

NOTE Confidence: 0.958237584444445

 $00:40:17.516 \longrightarrow 00:40:19.840$ And the way that that happens is

NOTE Confidence: 0.958237584444445

00:40:19.911 --> 00:40:21.886 essentially right here the yellow

NOTE Confidence: 0.958237584444445

 $00:40:21.886 \longrightarrow 00:40:24.105$ is the the min inhibitor bound to

NOTE Confidence: 0.958237584444445

 $00{:}40{:}24.105 \dashrightarrow 00{:}40{:}26.538$ wild type min and the purple is the

NOTE Confidence: 0.958237584444445

 $00:40:26.538 \longrightarrow 00:40:28.434$ min inhibitor bound to mutant min.

NOTE Confidence: 0.958237584444445

 $00{:}40{:}28.440 \dashrightarrow 00{:}40{:}30.568$ And and you can see essentially what's

NOTE Confidence: 0.958237584444445

 $00:40:30.568 \longrightarrow 00:40:32.838$ called a steric clash which so the the,

NOTE Confidence: 0.9582375844444445

 $00:40:32.840 \longrightarrow 00:40:35.157$ the min inhibitor is pushed out a

NOTE Confidence: 0.958237584444445

 $00{:}40{:}35.157 \dashrightarrow 00{:}40{:}37.250$ little bit here because of these

NOTE Confidence: 0.958237584444445

 $00:40:37.250 \longrightarrow 00:40:39.658$ changes in the amino acid and that

NOTE Confidence: 0.958237584444445

 $00:40:39.732 \longrightarrow 00:40:42.212$ leads to a 10 to 100 fold decrease

 $00:40:42.212 \longrightarrow 00:40:43.998$ in affinity of this molecule.

NOTE Confidence: 0.958237584444445

 $00{:}40{:}43.998 \dashrightarrow 00{:}40{:}46.508$ So this is I find this amazing

NOTE Confidence: 0.958237584444445

 $00:40:46.508 \longrightarrow 00:40:49.517$ because it's rare that you get to see

NOTE Confidence: 0.958237584444445

 $00:40:49.517 \longrightarrow 00:40:51.357$ molecularly the difference between

NOTE Confidence: 0.958237584444445

 $00:40:51.360 \longrightarrow 00:40:54.048$ response and resistance which is really

NOTE Confidence: 0.958237584444445

00:40:54.048 --> 00:40:56.896 essentially a few angstroms here of

NOTE Confidence: 0.958237584444445

 $00:40:56.896 \longrightarrow 00:41:00.592$ this Menon inhibitor binding to to Menon.

NOTE Confidence: 0.958237584444445

 $00:41:00.600 \longrightarrow 00:41:04.495$ So this we're we're continuing to work

NOTE Confidence: 0.9582375844444445

 $00:41:04.495 \longrightarrow 00:41:06.440$ on mechanisms of resistance in the past

NOTE Confidence: 0.958237584444445

 $00:41:06.440 \longrightarrow 00:41:08.192$ five or last five or 10 minutes here.

NOTE Confidence: 0.958237584444445

 $00:41:08.200 \longrightarrow 00:41:10.876$ I'll tell you about some others,

NOTE Confidence: 0.958237584444445

 $00:41:10.880 \longrightarrow 00:41:12.980$ but just getting back to a little

NOTE Confidence: 0.958237584444445

 $00{:}41{:}12.980 \dashrightarrow 00{:}41{:}15.279$ bit to that comment I made about

NOTE Confidence: 0.9582375844444445

 $00{:}41{:}15.280 \dashrightarrow 00{:}41{:}17.685$ dose escalation and stopping your

NOTE Confidence: 0.958237584444445

 $00:41:17.685 \longrightarrow 00:41:20.090$ dose escalation before you perhaps

NOTE Confidence: 0.958237584444445

 $00:41:20.165 \longrightarrow 00:41:22.360$ get to full potential efficacy.

00:41:22.360 --> 00:41:25.184 And now we see that we're developing or

NOTE Confidence: 0.958237584444445

 $00:41:25.184 \longrightarrow 00:41:27.290$ patients are developing mutations that

NOTE Confidence: 0.958237584444445

 $00:41:27.290 \longrightarrow 00:41:30.719$ all they do is shift the curve a little bit.

NOTE Confidence: 0.958237584444445

00:41:30.720 --> 00:41:33.267 It does make you wonder if you'd had a

NOTE Confidence: 0.958237584444445

00:41:33.267 --> 00:41:35.146 higher dose and a higher concentration

NOTE Confidence: 0.958237584444445

 $00:41:35.146 \longrightarrow 00:41:37.540$ earlier on if you might have prevented

NOTE Confidence: 0.958237584444445

 $00:41:37.602 \longrightarrow 00:41:39.960$ the cells from developing those mutations.

NOTE Confidence: 0.958237584444445

 $00:41:39.960 \longrightarrow 00:41:43.230$ So we with send X luckily providing

NOTE Confidence: 0.958237584444445

00:41:43.230 --> 00:41:45.090 us food now with varying amounts

NOTE Confidence: 0.958237584444445

 $00:41:45.090 \longrightarrow 00:41:46.839$ of the min an inhibitor.

NOTE Confidence: 0.9582375844444445

 $00:41:46.840 \longrightarrow 00:41:49.368$ We were able to do a dose response

NOTE Confidence: 0.958237584444445

 $00:41:49.368 \longrightarrow 00:41:51.907$ experiment in a PDX model with increasing

NOTE Confidence: 0.958237584444445

 $00{:}41{:}51.907 \dashrightarrow 00{:}41{:}54.480$ concentrations of the min an inhibitor.

NOTE Confidence: 0.958237584444445

 $00:41:54.480 \longrightarrow 00:41:56.454$ And you can see here that at

NOTE Confidence: 0.958237584444445

00:41:56.454 --> 00:41:57.680 the lowest concentration point,

 $00:41:57.680 \longrightarrow 00:42:00.680 \text{ O}3 3\%$, you see no response.

NOTE Confidence: 0.958237584444445

 $00{:}42{:}00.680 \rightarrow 00{:}42{:}02.738$ At the minimal the medium concentration

NOTE Confidence: 0.958237584444445

 $00:42:02.738 \longrightarrow 00:42:05.648$ here you do see a response and the

NOTE Confidence: 0.958237584444445

 $00:42:05.648 \longrightarrow 00:42:07.856$ leukemias progress and the vast majority

NOTE Confidence: 0.958237584444445

 $00:42:07.921 \longrightarrow 00:42:10.476$ of them will have developed the mutation.

NOTE Confidence: 0.958237584444445

 $00:42:10.480 \longrightarrow 00:42:11.925$ If you then go threefold

NOTE Confidence: 0.958237584444445

 $00:42:11.925 \longrightarrow 00:42:14.120$ more of them in an inhibitor,

NOTE Confidence: 0.958237584444445

00:42:14.120 --> 00:42:15.680 you get a much longer response.

NOTE Confidence: 0.958237584444445 00:42:15.680 --> 00:42:16.226 In fact, NOTE Confidence: 0.958237584444445

 $00:42:16.226 \longrightarrow 00:42:18.843$ maybe some of them here are cured of the

NOTE Confidence: 0.958237584444445

 $00{:}42{:}18.843 \to 00{:}42{:}21.075$ disease and when the resistance occurs,

NOTE Confidence: 0.958237584444445

 $00:42:21.080 \longrightarrow 00:42:23.040$ it occurs without the min and mutations.

NOTE Confidence: 0.958237584444445 00:42:23.040 --> 00:42:24.051 So in fact, NOTE Confidence: 0.958237584444445

 $00:42:24.051 \longrightarrow 00:42:25.736$ a higher concentration does at

NOTE Confidence: 0.958237584444445

 $00:42:25.736 \longrightarrow 00:42:28.101$ least in this model prevent the

NOTE Confidence: 0.958237584444445

 $00:42:28.101 \longrightarrow 00:42:29.571$ development of those mutations.

 $00:42:29.571 \longrightarrow 00:42:31.830$ So you can see if you stop your dose

NOTE Confidence: 0.958237584444445

 $00{:}42{:}31.893 \dashrightarrow 00{:}42{:}34.088$ escalation right here because you're

NOTE Confidence: 0.958237584444445

 $00:42:34.088 \longrightarrow 00:42:35.405$ getting differentiation syndrome

NOTE Confidence: 0.958237584444445

 $00:42:35.405 \longrightarrow 00:42:37.516$ and somebody tells you you have to,

NOTE Confidence: 0.958237584444445

 $00:42:37.520 \longrightarrow 00:42:39.150$ you're actually setting up a

NOTE Confidence: 0.958237584444445

 $00:42:39.150 \longrightarrow 00:42:40.780$ situation where you're going to

NOTE Confidence: 0.905408497272727

00:42:40.837 --> 00:42:43.799 get acquired resistance mutations.

NOTE Confidence: 0.905408497272727

 $00:42:43.800 \longrightarrow 00:42:45.036$ Having said all that,

NOTE Confidence: 0.905408497272727

 $00{:}42{:}45.036 \dashrightarrow 00{:}42{:}46.890$ we're still getting resistance way out

NOTE Confidence: 0.905408497272727

 $00:42:46.944 \longrightarrow 00:42:49.160$ here with the single agent at higher doses.

NOTE Confidence: 0.905408497272727

 $00:42:49.160 \longrightarrow 00:42:51.624$ So what's that all about and

NOTE Confidence: 0.905408497272727

00:42:51.624 --> 00:42:53.640 I'll quickly summarize this.

NOTE Confidence: 0.905408497272727

 $00{:}42{:}53.640 \dashrightarrow 00{:}42{:}55.315$ Essentially what we're seeing here

NOTE Confidence: 0.905408497272727

00:42:55.315 --> 00:42:57.382 is that the leukemia cells and

NOTE Confidence: 0.905408497272727

 $00:42:57.382 \longrightarrow 00:42:59.057$ this is another phenomenon that's

 $00{:}42{:}59.057 \dashrightarrow 00{:}43{:}01.089$ known in other settings now are

NOTE Confidence: 0.905408497272727

 $00{:}43{:}01.089 \dashrightarrow 00{:}43{:}02.997$ not mutating the men and they're

NOTE Confidence: 0.905408497272727

00:43:02.997 --> 00:43:04.348 actually changing their state

NOTE Confidence: 0.905408497272727

 $00:43:04.348 \longrightarrow 00:43:06.826$ significantly to lead to a state that

NOTE Confidence: 0.905408497272727

00:43:06.826 --> 00:43:09.440 we don't understand completely yet,

NOTE Confidence: 0.905408497272727

 $00:43:09.440 \longrightarrow 00:43:11.474$ but where they're now no longer

NOTE Confidence: 0.905408497272727

 $00:43:11.474 \longrightarrow 00:43:13.760$ dependent on that Hawks niece program.

NOTE Confidence: 0.905408497272727

 $00:43:13.760 \longrightarrow 00:43:15.512$ And and in fact interestingly they

NOTE Confidence: 0.905408497272727

00:43:15.512 --> 00:43:16.680 look much more differentiated.

NOTE Confidence: 0.905408497272727

 $00:43:16.680 \longrightarrow 00:43:19.563$ The leukemias themselves almost

NOTE Confidence: 0.905408497272727

 $00{:}43{:}19.563 \dashrightarrow 00{:}43{:}21.778$ look like monocytes in terms

NOTE Confidence: 0.905408497272727

00:43:21.778 --> 00:43:24.440 of their their flow cytometry,

NOTE Confidence: 0.905408497272727

 $00:43:24.440 \longrightarrow 00:43:25.810$ but definitely will transplant the

NOTE Confidence: 0.905408497272727

 $00{:}43{:}25.810 \dashrightarrow 00{:}43{:}27.680$ disease from 1 bow to the next.

NOTE Confidence: 0.905408497272727

 $00:43:27.680 \longrightarrow 00:43:30.000$ So they're not monocytes,

NOTE Confidence: 0.905408497272727

 $00:43:30.000 \longrightarrow 00:43:31.782$ but so we're trying to understand

 $00:43:31.782 \longrightarrow 00:43:33.386$ this mechanism mode of adaptive

NOTE Confidence: 0.905408497272727

 $00{:}43{:}33.386 \dashrightarrow 00{:}43{:}35.156$ resistance a little bit better.

NOTE Confidence: 0.905408497272727

 $00:43:35.160 \longrightarrow 00:43:37.200$ Now have developed a model,

NOTE Confidence: 0.905408497272727

 $00:43:37.200 \longrightarrow 00:43:39.616$ a cell line model for it and have

NOTE Confidence: 0.905408497272727

 $00{:}43{:}39.616 \dashrightarrow 00{:}43{:}41.480$ developed some PDX models as well.

NOTE Confidence: 0.905408497272727

 $00:43:41.480 \longrightarrow 00:43:44.456$ But the cell line model actually

NOTE Confidence: 0.905408497272727

 $00:43:44.456 \longrightarrow 00:43:46.938$ lets us move to what everyone

NOTE Confidence: 0.905408497272727

 $00{:}43{:}46.938 \dashrightarrow 00{:}43{:}48.930$ likes to do now which is a genome

NOTE Confidence: 0.905408497272727

 $00{:}43{:}48.983 \dashrightarrow 00{:}43{:}50.519$ wide CRISPR screen to say OK,

NOTE Confidence: 0.905408497272727

 $00:43:50.520 \longrightarrow 00:43:52.614$ how did the dependence do the

NOTE Confidence: 0.905408497272727

 $00{:}43{:}52.614 \dashrightarrow 00{:}43{:}54.010$ dependencies change when you

NOTE Confidence: 0.905408497272727

 $00:43:54.073 \longrightarrow 00:43:55.879$ go from one state to the next?

NOTE Confidence: 0.905408497272727

 $00:43:55.880 \longrightarrow 00:43:56.942$ And to summarize,

NOTE Confidence: 0.905408497272727

 $00{:}43{:}56.942 \dashrightarrow 00{:}43{:}59.851$ a lot of analysis in fact they do

NOTE Confidence: 0.905408497272727

 $00{:}43{:}59.851 \dashrightarrow 00{:}44{:}02.683$ appear to and this is on a subtle

 $00:44:02.683 \longrightarrow 00:44:04.976$ transferase CAT6A or MAZ which

NOTE Confidence: 0.905408497272727

 $00{:}44{:}04.976 \dashrightarrow 00{:}44{:}07.396$ also rearranged rarely in some

NOTE Confidence: 0.905408497272727

 $00:44:07.396 \longrightarrow 00:44:10.580$ leukemias now becomes seems to become

NOTE Confidence: 0.905408497272727

 $00:44:10.580 \longrightarrow 00:44:13.040$ relevant in this in this setting.

NOTE Confidence: 0.905408497272727

 $00:44:13.040 \longrightarrow 00:44:15.464$ So here is just an experiment

NOTE Confidence: 0.905408497272727

 $00:44:15.464 \longrightarrow 00:44:16.676$ showing you that.

NOTE Confidence: 0.905408497272727

 $00:44:16.680 \longrightarrow 00:44:19.596$ So we developed resistant leukemia cells

NOTE Confidence: 0.905408497272727

 $00:44:19.600 \longrightarrow 00:44:21.357$ that don't have the MIN in mutation.

NOTE Confidence: 0.905408497272727

 $00{:}44{:}21.360 \dashrightarrow 00{:}44{:}22.878$ They're resents to the MIN inhibitor.

NOTE Confidence: 0.905408497272727

 $00:44:22.880 \longrightarrow 00:44:24.320$ Here it is in blue.

NOTE Confidence: 0.905408497272727

 $00{:}44{:}24.320 \dashrightarrow 00{:}44{:}26.301$ But if you treat with the cat

NOTE Confidence: 0.905408497272727

 $00:44:26.301 \longrightarrow 00:44:28.000$ 6A in this case guide,

NOTE Confidence: 0.905408497272727

 $00:44:28.000 \longrightarrow 00:44:31.300$ it re sensitizes the the cell

NOTE Confidence: 0.905408497272727

 $00:44:31.300 \longrightarrow 00:44:33.930$ line to the MIN inhibitor.

NOTE Confidence: 0.905408497272727

 $00:44:33.930 \longrightarrow 00:44:36.480$ But interestingly and interestingly enough,

NOTE Confidence: 0.905408497272727

 $00:44:36.480 \longrightarrow 00:44:38.125$ the CAT 6A by itself in the

00:44:38.125 --> 00:44:39.714 absence of the MIN inhibitor has

NOTE Confidence: 0.905408497272727

 $00:44:39.714 \longrightarrow 00:44:41.358$ a little bit of an effect.

NOTE Confidence: 0.905408497272727

 $00:44:41.360 \longrightarrow 00:44:44.750$ It's really something about the relationship

NOTE Confidence: 0.905408497272727

 $00:44:44.750 \longrightarrow 00:44:47.516$ between CAT6A and Menon that is important.

NOTE Confidence: 0.905408497272727

00:44:47.520 --> 00:44:48.612 So what's CAT6A?

NOTE Confidence: 0.905408497272727

00:44:48.612 --> 00:44:50.796 It's a histone has still transferase

NOTE Confidence: 0.905408497272727

 $00:44:50.796 \longrightarrow 00:44:53.073$ as well modifies histone H3

NOTE Confidence: 0.905408497272727

00:44:53.073 --> 00:44:55.438 on various lysine shown here.

NOTE Confidence: 0.905408497272727

 $00{:}44{:}55.440 \dashrightarrow 00{:}44{:}58.180$ And if you do now chip seek in either O

NOTE Confidence: 0.905408497272727

 $00:44:58.254 \longrightarrow 00:45:01.278$ sensitive leukemia cell lines or resistant,

NOTE Confidence: 0.905408497272727

 $00:45:01.280 \longrightarrow 00:45:05.706$ the MLL Menon and CAT6A chip seek

NOTE Confidence: 0.905408497272727

 $00:45:05.706 \longrightarrow 00:45:08.344$ data looks very similar and in so here

NOTE Confidence: 0.905408497272727

 $00{:}45{:}08.344 \dashrightarrow 00{:}45{:}10.201$ both in the sensitive or the resistant

NOTE Confidence: 0.905408497272727

00:45:10.201 --> 00:45:12.406 and this is just showing that more

NOTE Confidence: 0.905408497272727

 $00:45:12.406 \longrightarrow 00:45:14.477$ broadly so men and Catsix is there,

 $00:45:14.480 \longrightarrow 00:45:17.240$ it's on the scene and it becomes seems

NOTE Confidence: 0.905408497272727

00:45:17.240 --> 00:45:19.843 to become much more important when the

NOTE Confidence: 0.905408497272727

 $00:45:19.843 \longrightarrow 00:45:22.760$ cells adapt to the men and inhibitor.

NOTE Confidence: 0.905408497272727

 $00:45:22.760 \longrightarrow 00:45:23.768$ Needless to say,

NOTE Confidence: 0.905408497272727

 $00:45:23.768 \longrightarrow 00:45:25.784$ we're now doing the experiments to

NOTE Confidence: 0.905408497272727

 $00{:}45{:}25.784 \dashrightarrow 00{:}45{:}28.594$ see if this combination in mice will

NOTE Confidence: 0.905408497272727

 $00:45:28.594 \longrightarrow 00:45:33.118$ reverse the resistance in patient samples.

NOTE Confidence: 0.905408497272727

 $00{:}45{:}33.120 \dashrightarrow 00{:}45{:}34.995$ It won't reverse the resistance

NOTE Confidence: 0.905408497272727

 $00:45:34.995 \longrightarrow 00:45:36.120$ to the mutations,

NOTE Confidence: 0.905408497272727

 $00:45:36.120 \longrightarrow 00:45:38.230$ but it might reverse the

NOTE Confidence: 0.905408497272727

 $00{:}45{:}38.230 \dashrightarrow 00{:}45{:}40.076$ resistance to the adapted form.

NOTE Confidence: 0.905408497272727

 $00{:}45{:}40.076 \dashrightarrow 00{:}45{:}42.400$ But the men inhibitor works well enough,

NOTE Confidence: 0.905408497272727

 $00:45:42.400 \longrightarrow 00:45:44.115$ it's hard to generate that adaptive form,

NOTE Confidence: 0.905408497272727

 $00:45:44.120 \longrightarrow 00:45:46.997$ so it's taking us a little while.

NOTE Confidence: 0.905408497272727

00:45:47.000 --> 00:45:50.393 I'm going to skip this just for time's sake,

NOTE Confidence: 0.847159214545455

 $00:45:50.400 \longrightarrow 00:45:54.064$ but to and just to summarize saying that

 $00:45:54.064 \longrightarrow 00:45:56.644$ these complexes here, the .1 complex,

NOTE Confidence: 0.847159214545455

 $00:45:56.644 \longrightarrow 00:45:58.196$ the Super elongation complex,

NOTE Confidence: 0.847159214545455

00:45:58.200 --> 00:46:01.856 I've been talking about MLL and CAT6A.

NOTE Confidence: 0.847159214545455

00:46:01.856 --> 00:46:03.680 If you look broadly,

NOTE Confidence: 0.847159214545455

 $00:46:03.680 \longrightarrow 00:46:06.088$ some of you probably know that Broad

NOTE Confidence: 0.847159214545455

 $00:46:06.088 \longrightarrow 00:46:07.843$ Institute's been doing broad CRISPR

NOTE Confidence: 0.847159214545455

00:46:07.843 --> 00:46:10.153 screens on five 600 cancer cell lines,

NOTE Confidence: 0.847159214545455

 $00:46:10.160 \longrightarrow 00:46:12.015$ and they make all this data publicly

NOTE Confidence: 0.847159214545455

00:46:12.015 --> 00:46:13.599 available in many different ways.

NOTE Confidence: 0.847159214545455

 $00{:}46{:}13.600 --> 00{:}46{:}15.120$ You can search that data.

NOTE Confidence: 0.847159214545455

 $00:46:15.120 \longrightarrow 00:46:18.410$ If you ask what genes have a

NOTE Confidence: 0.847159214545455

00:46:18.410 --> 00:46:20.499 similar dependency to Menin

NOTE Confidence: 0.847159214545455

 $00{:}46{:}20.499 \dashrightarrow 00{:}46{:}23.399$ throughout all of cancer space,

NOTE Confidence: 0.847159214545455

 $00:46:23.400 \longrightarrow 00:46:25.600$.1 is the next thing on the list.

NOTE Confidence: 0.847159214545455

 $00:46:25.600 \longrightarrow 00:46:28.090$ And then and then these other

00:46:28.090 --> 00:46:30.475 proteins here E&L which is part of

NOTE Confidence: 0.847159214545455

 $00:46:30.475 \longrightarrow 00:46:32.520$ the Super elongation complex CAT6.

NOTE Confidence: 0.847159214545455

00:46:32.520 --> 00:46:34.619 A point being these,

NOTE Confidence: 0.847159214545455

 $00:46:34.619 \longrightarrow 00:46:36.784$ it's clear that these complexes

NOTE Confidence: 0.847159214545455

 $00:46:36.784 \longrightarrow 00:46:38.840$ are working together somehow

NOTE Confidence: 0.847159214545455

00:46:38.840 --> 00:46:41.360 throughout many cancer cell lines,

NOTE Confidence: 0.847159214545455

 $00:46:41.360 \longrightarrow 00:46:43.160$ Leukemia for sure,

NOTE Confidence: 0.847159214545455

 $00:46:43.160 \longrightarrow 00:46:46.412$ but also probably others as well.

NOTE Confidence: 0.847159214545455

 $00:46:46.412 \longrightarrow 00:46:49.756$ And in fact that led us to this

NOTE Confidence: 0.847159214545455

00:46:49.756 --> 00:46:51.180 publication for actually for

NOTE Confidence: 0.847159214545455

 $00:46:51.180 \longrightarrow 00:46:53.918$ about a year and a half ago now.

NOTE Confidence: 0.847159214545455

00:46:53.920 --> 00:46:56.240 Matt Hemming,

NOTE Confidence: 0.847159214545455

00:46:56.240 --> 00:46:58.460 a paediatric or medical oncology

NOTE Confidence: 0.847159214545455

 $00:46:58.460 \longrightarrow 00:47:00.236$ fellow was interested in

NOTE Confidence: 0.847159214545455

 $00:47:00.236 \longrightarrow 00:47:01.409$ gastrointestinal stromal tumors

NOTE Confidence: 0.847159214545455

 $00{:}47{:}01.409 \dashrightarrow 00{:}47{:}03.719$ and just did a genome wide CRISPR

 $00:47:03.719 \longrightarrow 00:47:05.816$ screen because that's how you start

NOTE Confidence: 0.847159214545455

 $00:47:05.816 \longrightarrow 00:47:07.800$ every project these days it seems.

NOTE Confidence: 0.847159214545455

00:47:07.800 --> 00:47:10.184 And in fact cat 6A was one of

NOTE Confidence: 0.847159214545455

 $00:47:10.184 \longrightarrow 00:47:12.478$ the top hits in that screen.

NOTE Confidence: 0.847159214545455

 $00:47:12.480 \longrightarrow 00:47:15.680$ And then we looked a little bit more in more

NOTE Confidence: 0.847159214545455

 $00:47:15.762 \longrightarrow 00:47:18.400$ detail .1 and Menin were in there as well.

NOTE Confidence: 0.847159214545455

 $00:47:18.400 \longrightarrow 00:47:19.400$ And the bottom line is,

NOTE Confidence: 0.847159214545455

 $00:47:19.400 \longrightarrow 00:47:23.072$ is it appears that this CAT6,

NOTE Confidence: 0.847159214545455

 $00{:}47{:}23.072 \dashrightarrow 00{:}47{:}27.688$ A .1 Menin complex cooperation is

NOTE Confidence: 0.847159214545455

 $00:47:27.688 \longrightarrow 00:47:31.560$ important in this type of cancer as well.

NOTE Confidence: 0.847159214545455

 $00:47:31.560 \longrightarrow 00:47:33.240$ And we don't understand,

NOTE Confidence: 0.847159214545455

00:47:33.240 --> 00:47:36.018 you might ask why should ask why?

NOTE Confidence: 0.847159214545455

 $00{:}47{:}36.018 \dashrightarrow 00{:}47{:}37.482$ We don't completely understand

NOTE Confidence: 0.847159214545455

 $00:47:37.482 \longrightarrow 00:47:38.960$ why it's the case.

NOTE Confidence: 0.847159214545455

 $00:47:38.960 \longrightarrow 00:47:41.725$ But it does appear that when we

00:47:41.725 --> 00:47:44.160 inhibit CAT6A and men and in cell

NOTE Confidence: 0.847159214545455

00:47:44.160 --> 00:47:47.688 lines or in mice or in PDX or

NOTE Confidence: 0.847159214545455

 $00{:}47{:}47.688 \dashrightarrow 00{:}47{:}50.172$ xenograft models that a program

NOTE Confidence: 0.847159214545455

 $00:47:50.172 \longrightarrow 00:47:52.302$ that Matt had described earlier

NOTE Confidence: 0.847159214545455

 $00:47:52.302 \longrightarrow 00:47:54.046$ driven by transcription factors

NOTE Confidence: 0.847159214545455

 $00:47:54.046 \longrightarrow 00:47:55.924$ like one called hand one,

NOTE Confidence: 0.847159214545455

 $00:47:55.924 \longrightarrow 00:47:58.150$ which is known to be important

NOTE Confidence: 0.847159214545455

 $00:47:58.227 \longrightarrow 00:48:00.280$ for controlling lineage associated

NOTE Confidence: 0.847159214545455

 $00:48:00.280 \longrightarrow 00:48:02.680$ gene expression in this cancer,

NOTE Confidence: 0.847159214545455

 $00:48:02.680 \longrightarrow 00:48:04.560$ certain goes down pretty rapidly.

NOTE Confidence: 0.847159214545455

 $00{:}48{:}04.560 \dashrightarrow 00{:}48{:}06.605$ So there's something about the

NOTE Confidence: 0.847159214545455

00:48:06.605 --> 00:48:08.241 developmental program and this

NOTE Confidence: 0.847159214545455

 $00:48:08.241 \longrightarrow 00:48:10.655$ cancer as well that seems to be

NOTE Confidence: 0.847159214545455

 $00:48:10.655 \longrightarrow 00:48:11.951$ dependent on these complexes,

NOTE Confidence: 0.847159214545455

 $00:48:11.960 \longrightarrow 00:48:14.897$ but you don't really see it as

NOTE Confidence: 0.847159214545455

 $00:48:14.897 \longrightarrow 00:48:16.679$ dramatically as in leukemia until you

 $00:48:16.679 \longrightarrow 00:48:18.879$ start to combine the small molecules.

NOTE Confidence: 0.847159214545455

00:48:18.880 --> 00:48:20.000 Many will do a little bit of it,

NOTE Confidence: 0.847159214545455

00:48:20.000 --> 00:48:21.800 Mos cats, XA will do a little bit,

NOTE Confidence: 0.847159214545455

 $00:48:21.800 \longrightarrow 00:48:22.800$ but when you combine them,

NOTE Confidence: 0.847159214545455

 $00:48:22.800 \longrightarrow 00:48:25.474$ you really get a a dramatic response.

NOTE Confidence: 0.847159214545455

 $00:48:25.480 \longrightarrow 00:48:26.728$ So the point being that we're

NOTE Confidence: 0.847159214545455

 $00:48:26.728 \longrightarrow 00:48:28.000$ looking at this in leukemia,

NOTE Confidence: 0.847159214545455

 $00{:}48{:}28.000 \longrightarrow 00{:}48{:}30.266$ but we're starting to move into

NOTE Confidence: 0.847159214545455

 $00:48:30.266 \longrightarrow 00:48:33.942$ some other cancers as well to see if

NOTE Confidence: 0.847159214545455

 $00{:}48{:}33.942 \dashrightarrow 00{:}48{:}35.998$ indeed these developmental regulators,

NOTE Confidence: 0.847159214545455

 $00:48:36.000 \longrightarrow 00:48:38.800$ if you will, might be relevant there.

NOTE Confidence: 0.847159214545455

 $00:48:38.800 \longrightarrow 00:48:41.896$ I just summarized this data and

NOTE Confidence: 0.847159214545455

 $00{:}48{:}41.896 \dashrightarrow 00{:}48{:}43.960$ I'll end with this.

NOTE Confidence: 0.847159214545455

 $00{:}48{:}43.960 \dashrightarrow 00{:}48{:}46.180$ Pfizer just published a paper

NOTE Confidence: 0.847159214545455

 $00:48:46.180 \longrightarrow 00:48:47.956$ about six months ago.

00:48:47.960 --> 00:48:50.125 They've now developed a clinical

NOTE Confidence: 0.847159214545455

00:48:50.125 --> 00:48:52.240 grade CAT6A inhibitor and in fact

NOTE Confidence: 0.847159214545455

 $00:48:52.240 \longrightarrow 00:48:54.436$ this small molecule is in phase

NOTE Confidence: 0.847159214545455

 $00:48:54.436 \longrightarrow 00:48:56.656$ one clinical trials in estrogen

NOTE Confidence: 0.847159214545455

 $00:48:56.656 \longrightarrow 00:48:58.432$ receptor positive breast cancer.

NOTE Confidence: 0.847159214545455

00:48:58.440 --> 00:49:00.757 And it looks like from this paper

NOTE Confidence: 0.847159214545455

 $00:49:00.757 \longrightarrow 00:49:03.373$ and we've now done a number of

NOTE Confidence: 0.847159214545455

 $00:49:03.373 \longrightarrow 00:49:05.308$ experiments as well that somehow

NOTE Confidence: 0.847159214545455

00:49:05.308 --> 00:49:08.063 Menon is supporting the ER driven

NOTE Confidence: 0.847159214545455

 $00:49:08.063 \longrightarrow 00:49:09.437$ gene expression program.

NOTE Confidence: 0.812525483333333

 $00:49:09.440 \longrightarrow 00:49:12.554$ And Needless to say, I mean sorry Cat 6A.

NOTE Confidence: 0.812525483333333

 $00{:}49{:}12.560 \dashrightarrow 00{:}49{:}13.970$ Needless to say, we're now looking

NOTE Confidence: 0.812525483333333

 $00{:}49{:}13.970 \dashrightarrow 00{:}49{:}15.878$ at this Cat 6A men in combination.

NOTE Confidence: 0.812525483333333

00:49:15.880 --> 00:49:17.941 And again as much as like that we saw

NOTE Confidence: 0.812525483333333

 $00:49:17.941 \longrightarrow 00:49:20.674$ in GIST, it looks like this the ER

NOTE Confidence: 0.812525483333333

 $00{:}49{:}20.674 \dashrightarrow 00{:}49{:}23.009$ driven program is highly dependent on

00:49:23.009 --> 00:49:25.469 those two complexes and we're trying

NOTE Confidence: 0.812525483333333

 $00:49:25.469 \longrightarrow 00:49:28.156$ to work through that now as well.

NOTE Confidence: 0.812525483333333

00:49:28.160 --> 00:49:30.680 So to summarize what I've told you,

NOTE Confidence: 0.812525483333333

 $00:49:30.680 \longrightarrow 00:49:34.136$ the MEN in MLO complex is a relevant

NOTE Confidence: 0.812525483333333

00:49:34.136 --> 00:49:37.360 therapeutic target and snippet subset of

NOTE Confidence: 0.812525483333333

 $00:49:37.360 \longrightarrow 00:49:40.175$ AM LS and that acquired somatic mutations

NOTE Confidence: 0.812525483333333

00:49:40.175 --> 00:49:43.038 in men and are a mechanism of resistance,

NOTE Confidence: 0.812525483333333

 $00:49:43.040 \longrightarrow 00:49:45.206$ not the only mechanism of resistance

NOTE Confidence: 0.812525483333333

 $00:49:45.206 \longrightarrow 00:49:47.646$ but that clearly validates men and has

NOTE Confidence: 0.812525483333333

 $00:49:47.646 \longrightarrow 00:49:49.518$ a the rapeutic target in this disease.

NOTE Confidence: 0.812525483333333

00:49:49.520 --> 00:49:51.991 We're continuing to work on the various

NOTE Confidence: 0.812525483333333

 $00:49:51.991 \longrightarrow 00:49:54.426$ types of resistance and we do think

NOTE Confidence: 0.812525483333333

 $00{:}49{:}54.426 \dashrightarrow 00{:}49{:}56.071$ that rational combinations like men

NOTE Confidence: 0.812525483333333

 $00:49:56.071 \longrightarrow 00:49:58.003$ and CAT6A or men and other things with

NOTE Confidence: 0.812525483333333

00:49:58.003 --> 00:50:00.539 a lot going on in terms of trying to

 $00:50:00.539 \longrightarrow 00:50:01.760$ understand which combinations may

NOTE Confidence: 0.812525483333333

 $00{:}50{:}01.760 \dashrightarrow 00{:}50{:}03.040$ prevent development of resistance.

NOTE Confidence: 0.812525483333333

 $00:50:03.040 \longrightarrow 00:50:05.147$ And perhaps the most exciting in the

NOTE Confidence: 0.812525483333333

00:50:05.147 --> 00:50:07.578 longer term is if we can understand

NOTE Confidence: 0.812525483333333

 $00:50:07.578 \longrightarrow 00:50:09.408$ where these mechanisms might be

NOTE Confidence: 0.812525483333333

00:50:09.408 --> 00:50:11.078 important even beyond leukemia.

NOTE Confidence: 0.812525483333333

 $00:50:11.080 \longrightarrow 00:50:12.160$ And I think they're going to

NOTE Confidence: 0.812525483333333

 $00:50:12.160 \longrightarrow 00:50:12.520$ be opportunities,

NOTE Confidence: 0.812525483333333

00:50:12.520 --> 00:50:15.112 but we certainly still have work to do to,

NOTE Confidence: 0.812525483333333

 $00:50:15.120 \longrightarrow 00:50:16.056$ to prove that.

NOTE Confidence: 0.812525483333333

 $00:50:16.056 \longrightarrow 00:50:18.240$ So I've talked much about the people

NOTE Confidence: 0.812525483333333

 $00:50:18.309 \longrightarrow 00:50:20.640$ in in the lab that have done the work.

NOTE Confidence: 0.812525483333333

 $00{:}50{:}20.640 \dashrightarrow 00{:}50{:}22.800$ These are our collaborators at Dana

NOTE Confidence: 0.812525483333333

00:50:22.800 --> 00:50:24.972 Farber actually Nathaniel Gray now

NOTE Confidence: 0.812525483333333

 $00:50:24.972 \longrightarrow 00:50:28.040$ at Stanford and Ross I mentioned and

NOTE Confidence: 0.812525483333333

 $00:50:28.040 \longrightarrow 00:50:30.961$ Chang and Richard who work with Ross

 $00:50:30.961 \longrightarrow 00:50:34.095$ at MSK and some of our collaborators

NOTE Confidence: 0.812525483333333

 $00:50:34.095 \longrightarrow 00:50:35.461$ throughout HMS community.

NOTE Confidence: 0.812525483333333

 $00:50:35.461 \longrightarrow 00:50:36.604$ So thank you,

NOTE Confidence: 0.812525483333333

 $00:50:36.604 \longrightarrow 00:50:38.890$ happy to take any questions and

NOTE Confidence: 0.812525483333333

 $00:50:38.959 \longrightarrow 00:50:40.999$ thanks for thanks for staying.

NOTE Confidence: 0.812525483333333

00:50:41.000 --> 00:50:41.080 All

NOTE Confidence: 0.83906405

00:50:48.760 --> 00:50:50.820 right, absolutely spectacular grand

NOTE Confidence: 0.83906405

 $00:50:50.820 \longrightarrow 00:50:53.645$ rounds really going from basic science to

NOTE Confidence: 0.83906405

 $00:50:53.645 \longrightarrow 00:50:55.946$ the patient and back and forth and it's

NOTE Confidence: 0.83906405

 $00{:}50{:}55.946 {\: -->\:} 00{:}50{:}59.000$ absolutely spectacular. Thank you. Yeah

NOTE Confidence: 0.53273008

 $00:50:59.000 \longrightarrow 00:51:01.320$ and and great talk. So I think

NOTE Confidence: 0.775831832777778

 $00:51:01.320 \longrightarrow 00:51:03.816$ the main issue and you know as a

NOTE Confidence: 0.775831832777778

 $00{:}51{:}03.816 \dashrightarrow 00{:}51{:}05.449$ clinical investigator in my mind

NOTE Confidence: 0.775831832777778

 $00{:}51{:}05.449 \dashrightarrow 00{:}51{:}07.034$ with all epigenetic the rapies is,

NOTE Confidence: 0.775831832777778

00:51:07.040 --> 00:51:09.021 is the therapeutic window as you were

 $00:51:09.021 \longrightarrow 00:51:11.157$ saying like how do you actually disrupt

NOTE Confidence: 0.775831832777778

 $00{:}51{:}11.160 \dashrightarrow 00{:}51{:}12.540$ translational or transcriptional

NOTE Confidence: 0.775831832777778

 $00:51:12.540 \longrightarrow 00:51:15.300$ programs that are relevant to the

NOTE Confidence: 0.775831832777778

 $00:51:15.300 \longrightarrow 00:51:17.597$ leukemia but not to the normal tissue.

NOTE Confidence: 0.775831832777778

 $00:51:17.600 \longrightarrow 00:51:20.060$ So for example with this index

NOTE Confidence: 0.775831832777778

 $00:51:20.060 \longrightarrow 00:51:22.893$ particular drug was this as a result

NOTE Confidence: 0.775831832777778

 $00:51:22.893 \longrightarrow 00:51:25.085$ of screening of thousands of molecules

NOTE Confidence: 0.775831832777778

 $00:51:25.085 \longrightarrow 00:51:27.035$ and because as you mentioned it,

NOTE Confidence: 0.775831832777778

 $00:51:27.040 \longrightarrow 00:51:28.622$ it seems like to disrupt only where

NOTE Confidence: 0.775831832777778

 $00:51:28.622 \longrightarrow 00:51:29.919$ it's relevant to the leukemia,

NOTE Confidence: 0.775831832777778

 $00:51:29.920 \longrightarrow 00:51:32.086$ but it's not disrupting the MLL

NOTE Confidence: 0.775831832777778

 $00:51:32.086 \longrightarrow 00:51:33.760$ interactions that are important for

NOTE Confidence: 0.775831832777778

 $00:51:33.760 \longrightarrow 00:51:35.640$ normal hematopoiesis and other functions.

NOTE Confidence: 0.775831832777778

00:51:35.640 --> 00:51:37.915 So that how did this transition happen?

NOTE Confidence: 0.775831832777778

 $00:51:37.920 \longrightarrow 00:51:40.016$ It's just a matter of luck or is

NOTE Confidence: 0.775831832777778

00:51:40.016 --> 00:51:42.116 it tons of screening of other yeah

 $00:51:42.160 \longrightarrow 00:51:43.400$ you know the old saying

NOTE Confidence: 0.849547771111111

 $00:51:43.400 \longrightarrow 00:51:44.392$ better lucky than good.

NOTE Confidence: 0.849547771111111

00:51:44.400 --> 00:51:48.088 I I think that that's what we found here,

NOTE Confidence: 0.849547771111111

 $00:51:48.088 \longrightarrow 00:51:50.392$ meaning that for some reason and

NOTE Confidence: 0.849547771111111

 $00:51:50.392 \longrightarrow 00:51:52.800$ we're looking into this men and is

NOTE Confidence: 0.849547771111111

 $00:51:52.800 \longrightarrow 00:51:55.440$ only critical for MLL wild type.

NOTE Confidence: 0.849547771111111

00:51:55.440 --> 00:51:57.805 Obviously this mechanism probably wasn't

NOTE Confidence: 0.849547771111111

00:51:57.805 --> 00:52:00.170 developed during evolution for MLL

NOTE Confidence: 0.849547771111111

 $00:52:00.238 \longrightarrow 00:52:03.080$ fusions to localize to certain loci.

NOTE Confidence: 0.849547771111111

 $00:52:03.080 \longrightarrow 00:52:05.996$ So MLL as I mentioned is a monstrous protein.

NOTE Confidence: 0.8495477711111111

 $00:52:06.000 \longrightarrow 00:52:08.758$ It has many domains that combine chromatin.

NOTE Confidence: 0.849547771111111

00:52:08.760 --> 00:52:10.923 So it's very likely and there's some

NOTE Confidence: 0.849547771111111

00:52:10.923 --> 00:52:13.335 data to support this that different

NOTE Confidence: 0.849547771111111

 $00:52:13.335 \longrightarrow 00:52:15.710$ domains or different binding partners

NOTE Confidence: 0.849547771111111

 $00:52:15.710 \longrightarrow 00:52:17.697$ determine localization to different

00:52:17.697 --> 00:52:19.158 places throughout chromatin.

NOTE Confidence: 0.849547771111111

 $00{:}52{:}19.160 \dashrightarrow 00{:}52{:}21.348$ And it just so happens in this it

NOTE Confidence: 0.849547771111111

 $00:52:21.348 \longrightarrow 00:52:23.172$ kind of was predicted by some of the

NOTE Confidence: 0.849547771111111

 $00:52:23.172 \longrightarrow 00:52:25.121$ early Cleary work that Menon was a

NOTE Confidence: 0.849547771111111

 $00:52:25.121 \longrightarrow 00:52:26.800$ unique dependency in these leukemias.

NOTE Confidence: 0.849547771111111

 $00:52:26.800 \longrightarrow 00:52:30.280$ Well that's because it's really

NOTE Confidence: 0.849547771111111

 $00:52:30.280 \longrightarrow 00:52:33.728$ intersecting exactly with the

NOTE Confidence: 0.849547771111111

 $00:52:33.728 \longrightarrow 00:52:36.970$ important MLL fusion driven targets.

NOTE Confidence: 0.8495477711111111

 $00:52:36.970 \longrightarrow 00:52:38.595$ We don't know the molecular

NOTE Confidence: 0.849547771111111

 $00:52:38.595 \longrightarrow 00:52:39.840$ mechanism for that yet,

NOTE Confidence: 0.8495477711111111

 $00{:}52{:}39.840 \dashrightarrow 00{:}52{:}41.611$ but basically it's a long way of

NOTE Confidence: 0.849547771111111

 $00:52:41.611 \longrightarrow 00:52:43.444$ saying we think there's a multi

NOTE Confidence: 0.849547771111111

 $00{:}52{:}43.444 \dashrightarrow 00{:}52{:}45.134$ valent interaction between MLL and

NOTE Confidence: 0.849547771111111

00:52:45.134 --> 00:52:47.071 chromatin and Menon is only important

NOTE Confidence: 0.849547771111111

 $00:52:47.071 \longrightarrow 00:52:48.877$ for a subset of that interaction.

NOTE Confidence: 0.611521578

00:52:50.360 --> 00:52:51.488 Scott, fantastic talk.

 $00{:}52{:}51.488 \to 00{:}52{:}52.942$ And the the question about

NOTE Confidence: 0.611521578

 $00:52:52.942 \longrightarrow 00:52:53.878$ the solar cancer part,

NOTE Confidence: 0.611521578

 $00:52:53.880 \longrightarrow 00:52:55.768$ so you alluded to that you are it's

NOTE Confidence: 0.611521578

 $00{:}52{:}55.768 \longrightarrow 00{:}52{:}57.752$ great to see that you and other

NOTE Confidence: 0.611521578

 $00:52:57.752 \longrightarrow 00:52:59.640$ companies are looking into this aspect.

NOTE Confidence: 0.611521578

 $00:52:59.640 \longrightarrow 00:53:02.076$ So, so we know that oxygens are

NOTE Confidence: 0.611521578

 $00:53:02.076 \longrightarrow 00:53:03.940$ often deregulated in solar cancer

NOTE Confidence: 0.611521578

 $00:53:03.940 \longrightarrow 00:53:06.196$ as well in addition to leukemia.

NOTE Confidence: 0.611521578

 $00:53:06.200 \longrightarrow 00:53:08.996$ So what happens to men inhibitor,

NOTE Confidence: 0.611521578

 $00:53:09.000 \longrightarrow 00:53:12.240$ the men and MLL inhibitor monotherapies,

NOTE Confidence: 0.611521578

 $00:53:12.240 \longrightarrow 00:53:13.566$ do they have any efficacy in

NOTE Confidence: 0.611521578

00:53:13.566 --> 00:53:15.077 solar cancer or you have to

NOTE Confidence: 0.611521578

 $00{:}53{:}15.077 \dashrightarrow 00{:}53{:}16.221$ really using combinations before

NOTE Confidence: 0.611521578

00:53:16.221 --> 00:53:17.880 you can see something happening?

NOTE Confidence: 0.60625714

 $00:53:17.880 \longrightarrow 00:53:19.560$ Yeah, it's good question.

00:53:19.560 --> 00:53:21.484 So actually it's a good point.

NOTE Confidence: 0.60625714

 $00:53:21.484 \longrightarrow 00:53:23.746$ There are a number of say subtypes of

NOTE Confidence: 0.60625714

 $00:53:23.746 \longrightarrow 00:53:25.558$ lung cancer that express HOX genes.

NOTE Confidence: 0.60625714

 $00:53:25.560 \longrightarrow 00:53:27.280$ We actually haven't looked

NOTE Confidence: 0.60625714

00:53:27.280 --> 00:53:29.000 at that probably should,

NOTE Confidence: 0.60625714

 $00:53:29.000 \longrightarrow 00:53:31.758$ but in the both in the gastrointestinal

NOTE Confidence: 0.60625714

00:53:31.758 --> 00:53:33.808 stromal tumors and the ER

NOTE Confidence: 0.60625714

00:53:33.808 --> 00:53:35.798 positive breast cancer cell lines,

NOTE Confidence: 0.60625714

 $00:53:35.800 \longrightarrow 00:53:39.636$ the men inhibitor will slow their growth.

NOTE Confidence: 0.60625714

 $00:53:39.640 \longrightarrow 00:53:41.656$ So they have some effect and that

NOTE Confidence: 0.60625714

 $00:53:41.656 \longrightarrow 00:53:43.880$ is it looks like through somehow

NOTE Confidence: 0.60625714

 $00{:}53{:}43.880 \dashrightarrow 00{:}53{:}46.040$ modulating the ER driven program,

NOTE Confidence: 0.60625714

 $00{:}53{:}46.040 \dashrightarrow 00{:}53{:}48.146$ but it's much more dramatic both

NOTE Confidence: 0.60625714

 $00{:}53{:}48.146 \dashrightarrow 00{:}53{:}49.966$ the gene expression changes and

NOTE Confidence: 0.60625714

 $00:53:49.966 \longrightarrow 00:53:51.746$ the inhibition of proliferation if

NOTE Confidence: 0.60625714

 $00:53:51.746 \longrightarrow 00:53:53.564$ you combine the minute inhibitor

 $00:53:53.564 \longrightarrow 00:53:55.520$ and and the cat 6A inhibitor.

NOTE Confidence: 0.60625714

 $00:53:55.520 \longrightarrow 00:53:58.480$ So how that works, we don't,

NOTE Confidence: 0.60625714

 $00:53:58.480 \longrightarrow 00:54:01.080$ we don't completely understand yet.

NOTE Confidence: 0.60625714

00:54:01.080 --> 00:54:04.385 It's a way of saying and and predicting

NOTE Confidence: 0.60625714

 $00:54:04.385 \longrightarrow 00:54:06.275$ and hopefully get the word out

NOTE Confidence: 0.60625714

00:54:06.275 --> 00:54:08.280 before all the trials get shut down,

NOTE Confidence: 0.60625714

 $00:54:08.280 \longrightarrow 00:54:10.005$ that the single agents might

NOTE Confidence: 0.60625714

00:54:10.005 --> 00:54:11.040 have some activity,

NOTE Confidence: 0.60625714

00:54:11.040 --> 00:54:12.937 but I suspect they won't be home

NOTE Confidence: 0.60625714

 $00{:}54{:}12.937 \dashrightarrow 00{:}54{:}14.954$ runs and the companies have to

NOTE Confidence: 0.60625714

 $00:54:14.954 \longrightarrow 00:54:16.854$ have the wherewithal to actually

NOTE Confidence: 0.60625714

 $00:54:16.854 \longrightarrow 00:54:18.880$ move forward to the combinations.

NOTE Confidence: 0.60625714

 $00{:}54{:}18.880 \dashrightarrow 00{:}54{:}21.620$ And those of you who've done this

NOTE Confidence: 0.60625714

 $00:54:21.620 \longrightarrow 00:54:23.120$ before know that can be difficult.

NOTE Confidence: 0.60625714

 $00:54:23.120 \longrightarrow 00:54:26.079$ So we're going to try to get the

 $00:54:26.079 \longrightarrow 00:54:27.752$ word out that you should move

NOTE Confidence: 0.60625714

 $00:54:27.752 \longrightarrow 00:54:29.920$ the combinations quickly before

NOTE Confidence: 0.60625714

 $00:54:29.920 \longrightarrow 00:54:32.200$ people lose interest.

NOTE Confidence: 0.60625714

 $00:54:32.200 \longrightarrow 00:54:34.234$ There's a lot of psychology and

NOTE Confidence: 0.60625714

 $00:54:34.234 \longrightarrow 00:54:36.116$ sociology that goes into keeping

NOTE Confidence: 0.60625714

 $00:54:36.116 \longrightarrow 00:54:37.956$ the drug companies interested,

NOTE Confidence: 0.60625714

 $00:54:37.960 \longrightarrow 00:54:39.976$ so that's a little bit of a soapbox to

NOTE Confidence: 0.60625714

 $00:54:39.976 \longrightarrow 00:54:41.916$ say the single agents do something.

NOTE Confidence: 0.60625714

 $00:54:41.920 \longrightarrow 00:54:44.280$ The combination definitely looks better.

NOTE Confidence: 0.775965477222222

 $00:54:46.280 \longrightarrow 00:54:47.612$ Manoj, a great talk.

NOTE Confidence: 0.775965477222222

00:54:47.612 --> 00:54:49.610 My question is about the specificity

NOTE Confidence: 0.775965477222222

 $00:54:49.676 \longrightarrow 00:54:51.671$ of both the MLL fusion proteins and

NOTE Confidence: 0.775965477222222

00:54:51.671 --> 00:54:52.956 the NPM 1C that you alluded to.

NOTE Confidence: 0.775965477222222

 $00:54:52.960 \longrightarrow 00:54:55.560$ And Amar was also asking.

NOTE Confidence: 0.775965477222222

00:54:55.560 --> 00:54:58.074 So I think you probably worked on this

NOTE Confidence: 0.775965477222222

 $00{:}54{:}58.074 \dashrightarrow 00{:}54{:}59.838$ on the cancer discovery latest paper,

 $00:54:59.840 \longrightarrow 00:55:02.152$ but most of them also seem to be

NOTE Confidence: 0.775965477222222

 $00{:}55{:}02.152 \dashrightarrow 00{:}55{:}03.830$ overlapping with like say PRC 2

NOTE Confidence: 0.775965477222222

 $00:55:03.830 \longrightarrow 00:55:05.782$ targets or you know are there other

NOTE Confidence: 0.775965477222222

 $00:55:05.782 \longrightarrow 00:55:07.762$ mechanisms you think are relevant to

NOTE Confidence: 0.775965477222222

 $00:55:07.762 \longrightarrow 00:55:09.900$ why these are so tightly overlapping

NOTE Confidence: 0.775965477222222

 $00:55:09.900 \longrightarrow 00:55:11.800$ the fusion proteins and the

NOTE Confidence: 0.86876282

 $00:55:12.160 \longrightarrow 00:55:13.798$ yeah, so, so it's a good point.

NOTE Confidence: 0.86876282

00:55:13.800 --> 00:55:16.068 So they do overlap significantly with

NOTE Confidence: 0.86876282

 $00{:}55{:}16.068 \dashrightarrow 00{:}55{:}19.619$ PRC 2 targets and you know as you may

NOTE Confidence: 0.86876282

 $00:55:19.619 \longrightarrow 00:55:23.120$ remember the this has been predicted

NOTE Confidence: 0.86876282

 $00:55:23.120 \longrightarrow 00:55:25.398$ for 3 decades from the Drosophila work.

NOTE Confidence: 0.86876282

 $00:55:25.400 \longrightarrow 00:55:27.775$ The initial Drosophila work show

NOTE Confidence: 0.86876282

 $00{:}55{:}27.775 \dashrightarrow 00{:}55{:}30.050$ Polycom and Trithorax actually are

NOTE Confidence: 0.86876282

 $00:55:30.050 \longrightarrow 00:55:32.175$ known to be genetically genetic

NOTE Confidence: 0.86876282

 $00:55:32.175 \longrightarrow 00:55:35.425$ antagonists of one another and the the

 $00:55:35.425 \longrightarrow 00:55:37.800$ trithorax slash MLL complex controls

NOTE Confidence: 0.86876282

 $00{:}55{:}37.800 \dashrightarrow 00{:}55{:}40.192$ developmental genes that the PRC two

NOTE Confidence: 0.86876282

 $00:55:40.192 \dashrightarrow 00:55:42.600$ or Polycom complex wants to shut off.

NOTE Confidence: 0.86876282

 $00:55:42.600 \longrightarrow 00:55:46.211$ So in absolutely this is A these

NOTE Confidence: 0.86876282

 $00:55:46.211 \longrightarrow 00:55:48.655$ proteins complexes MLL probably

NOTE Confidence: 0.86876282

00:55:48.655 --> 00:55:50.468 Catsix A are inventing.

NOTE Confidence: 0.86876282

 $00:55:50.468 \longrightarrow 00:55:52.526$ We've shown this in some other settings

NOTE Confidence: 0.86876282

 $00:55:52.526 \longrightarrow 00:55:54.568$ are preventing the Polycom complexes from

NOTE Confidence: 0.86876282

 $00{:}55{:}54.568 {\:\dashrightarrow\:} 00{:}55{:}56.880$ coming in and repressing gene expression.

NOTE Confidence: 0.86876282

 $00:55:56.880 \longrightarrow 00:55:58.872$ So the the way we think that this

NOTE Confidence: 0.86876282

 $00{:}55{:}58.872 \dashrightarrow 00{:}56{:}00.473$ is working is during hematopoietic

NOTE Confidence: 0.86876282

 $00:56:00.473 \longrightarrow 00:56:03.344$ development as you go from stem cells to

NOTE Confidence: 0.86876282

 $00:56:03.344 \longrightarrow 00:56:05.678$ progenitors to fully developed myeloid cells,

NOTE Confidence: 0.86876282

 $00:56:05.680 \longrightarrow 00:56:08.228$ the Polycom complex at least for a

NOTE Confidence: 0.86876282

 $00:56:08.228 \longrightarrow 00:56:10.081$ subset of developmental loci are

NOTE Confidence: 0.86876282

 $00{:}56{:}10.081 \dashrightarrow 00{:}56{:}12.151$ shutting those programs off and the

 $00:56:12.151 \longrightarrow 00:56:14.358$ MLL fusion won't let them do that.

NOTE Confidence: 0.86876282

 $00{:}56{:}14.360 \dashrightarrow 00{:}56{:}16.590$ So they're antagonizing and then

NOTE Confidence: 0.86876282

00:56:16.590 --> 00:56:19.311 Newt 98 fusions and probably NPM

NOTE Confidence: 0.86876282

00:56:19.311 --> 00:56:21.759 one are antagonizing PRC 2 section.

NOTE Confidence: 0.86876282

 $00:56:21.760 \longrightarrow 00:56:22.000 \text{ Yeah},$

NOTE Confidence: 0.831861783333333

 $00:56:23.160 \longrightarrow 00:56:24.205$ awesome. I'm going to bring

NOTE Confidence: 0.831861783333333

 $00:56:24.205 \longrightarrow 00:56:25.719$ it over to you in a second.

NOTE Confidence: 0.831861783333333

 $00{:}56{:}25.720 \dashrightarrow 00{:}56{:}27.477$ We have an online question which I

NOTE Confidence: 0.831861783333333

 $00{:}56{:}27.477 \dashrightarrow 00{:}56{:}28.797$ think you probably partially answered

NOTE Confidence: 0.831861783333333

 $00:56:28.797 \longrightarrow 00:56:30.877$ and that is what is the mechanism of

NOTE Confidence: 0.831861783333333

 $00{:}56{:}30.929 \dashrightarrow 00{:}56{:}32.758$ gene specific targeting of MLL EF9

NOTE Confidence: 0.831861783333333

 $00:56:32.758 \longrightarrow 00:56:34.851$ and similarly what you think is the

NOTE Confidence: 0.831861783333333

 $00:56:34.851 \longrightarrow 00:56:36.985$ underlying mechanism for the gene target

NOTE Confidence: 0.831861783333333

 $00{:}56{:}36.985 \dashrightarrow 00{:}56{:}38.760$ specificity of men and inhibitors.

NOTE Confidence: 0.831861783333333

 $00:56:38.760 \longrightarrow 00:56:40.400$ So for the online person, yeah.

 $00:56:40.400 \longrightarrow 00:56:42.632$ So it's a good, it's a very good question.

NOTE Confidence: 0.85349050555556

00:56:42.640 --> 00:56:44.760 We do it. I don't the bottom line is,

NOTE Confidence: 0.85349050555556

 $00:56:44.760 \longrightarrow 00:56:45.900$ is we don't know the answer

NOTE Confidence: 0.85349050555556

 $00:56:45.946 \longrightarrow 00:56:47.038$ to the second part of that.

NOTE Confidence: 0.85349050555556

 $00:56:47.040 \longrightarrow 00:56:50.200$ I mean that's the that's at the moment.

NOTE Confidence: 0.85349050555556

 $00:56:50.200 \longrightarrow 00:56:51.640$ Probably the most critical question

NOTE Confidence: 0.85349050555556

 $00:56:51.640 \longrightarrow 00:56:53.810$ is why is it that Menon's only

NOTE Confidence: 0.85349050555556

00:56:53.810 --> 00:56:55.635 important for localization of the

NOTE Confidence: 0.85349050555556

 $00{:}56{:}55.635 \dashrightarrow 00{:}56{:}57.560$ MLL compacts to certain loci.

NOTE Confidence: 0.85349050555556

 $00:56:57.560 \longrightarrow 00:56:58.792$ So Needless to say,

NOTE Confidence: 0.85349050555556

 $00:56:58.792 \longrightarrow 00:57:00.332$ we're looking at various aspects

NOTE Confidence: 0.85349050555556

 $00:57:00.332 \longrightarrow 00:57:02.548$ of those loci to try to understand

NOTE Confidence: 0.85349050555556

 $00{:}57{:}02.548 \dashrightarrow 00{:}57{:}04.399$ what that's what that's all about.

NOTE Confidence: 0.853490505555556

 $00:57:04.400 \dashrightarrow 00:57:07.200$ MLL targeting to chromatin broadly has many,

NOTE Confidence: 0.85349050555556

00:57:07.200 --> 00:57:08.600 probably has many mechanisms,

NOTE Confidence: 0.85349050555556

 $00{:}57{:}08.600 \dashrightarrow 00{:}57{:}11.052$ some of its direct there's a domain

00:57:11.052 --> 00:57:13.040 on MLL that binds to what's called

NOTE Confidence: 0.853490505555556

00:57:13.040 --> 00:57:15.716 a CPG island which is upstream of

NOTE Confidence: 0.85349050555556

 $00:57:15.716 \longrightarrow 00:57:17.352$ many transcriptional start sites.

NOTE Confidence: 0.85349050555556

 $00:57:17.360 \longrightarrow 00:57:18.596$ Menon plays a role.

NOTE Confidence: 0.85349050555556

 $00:57:18.596 \longrightarrow 00:57:20.141$ There are other accessory proteins

NOTE Confidence: 0.85349050555556

 $00:57:20.141 \longrightarrow 00:57:21.080$ that play roles.

NOTE Confidence: 0.85349050555556

 $00:57:21.080 \longrightarrow 00:57:23.424$ So I think the cell has just given

NOTE Confidence: 0.85349050555556

 $00:57:23.424 \longrightarrow 00:57:25.249$ itself many options to figure out

NOTE Confidence: 0.85349050555556

00:57:25.249 --> 00:57:28.008 where to put MLL and and each of

NOTE Confidence: 0.85349050555556

 $00:57:28.008 \longrightarrow 00:57:29.876$ those mechanisms slightly different.

NOTE Confidence: 0.827995068

 $00:57:31.040 \longrightarrow 00:57:32.480$ We have a trainee question.

NOTE Confidence: 0.7926859

 $00:57:33.680 \longrightarrow 00:57:34.680$ So my name is trainee,

NOTE Confidence: 0.668171385714286

 $00{:}57{:}36.880 \dashrightarrow 00{:}57{:}38.171$ I just wanted to follow my name used

NOTE Confidence: 0.668171385714286

 $00:57:38.171 \longrightarrow 00:57:39.994$ to be that at some point you graduated.

NOTE Confidence: 0.668171385714286

00:57:39.994 --> 00:57:42.210 I just want to follow up on your

 $00:57:42.274 \longrightarrow 00:57:44.398$ comment about combination therapies.

NOTE Confidence: 0.668171385714286

00:57:44.400 --> 00:57:45.992 So I specifically wanted to ask is there

NOTE Confidence: 0.668171385714286

00:57:45.992 --> 00:57:47.320 any thought that men and inhibition

NOTE Confidence: 0.668171385714286

00:57:47.320 --> 00:57:49.054 could convert these resistant like

NOTE Confidence: 0.668171385714286

 $00:57:49.054 \longrightarrow 00:57:50.489$ subtypes especially in the pediatric

NOTE Confidence: 0.668171385714286

 $00:57:50.489 \longrightarrow 00:57:52.268$ setting to a chemosensitive form if

NOTE Confidence: 0.668171385714286

 $00:57:52.268 \longrightarrow 00:57:53.723$ there's thought of combining with

NOTE Confidence: 0.668171385714286

00.57.53.723 -> 00.57.55.824 chemo to then re sensitize them and

NOTE Confidence: 0.668171385714286

00:57:55.824 --> 00:57:57.400 potentially cure those patients. Yeah,

NOTE Confidence: 0.888061219285714

 $00:57:57.400 \longrightarrow 00:57:59.815$ it's it's a good short answer is

NOTE Confidence: 0.888061219285714

 $00{:}57{:}59.815 \dashrightarrow 00{:}58{:}02.360$ we don't know the answer to that.

NOTE Confidence: 0.888061219285714

 $00:58:02.360 \longrightarrow 00:58:04.979$ I I think there's a lot to be learned

NOTE Confidence: 0.888061219285714

 $00:58:04.979 \longrightarrow 00:58:08.077$ and the beauty of having now multiple

NOTE Confidence: 0.888061219285714

00:58:08.077 --> 00:58:10.680 small molecule selective small molecules,

NOTE Confidence: 0.888061219285714

 $00:58:10.680 \longrightarrow 00:58:14.040$ we can do those types of experiments,

NOTE Confidence: 0.888061219285714

 $00:58:14.040 \longrightarrow 00:58:15.690$ but the short answer is we

00:58:15.690 --> 00:58:17.040 haven't haven't gotten there yet.

NOTE Confidence: 0.86971958

00:58:20.000 -> 00:58:21.029 Yeah, great talk.

NOTE Confidence: 0.86971958

00:58:21.029 --> 00:58:22.744 Have you seen any phenotypic

NOTE Confidence: 0.86971958

 $00:58:22.744 \longrightarrow 00:58:24.202$ differences in the fusion

NOTE Confidence: 0.86971958

 $00:58:24.202 \longrightarrow 00:58:25.800$ partners with MML or MLL?

NOTE Confidence: 0.86971958

00:58:25.800 --> 00:58:26.800 You mentioned there's you know,

NOTE Confidence: 0.86971958

 $00:58:26.800 \longrightarrow 00:58:27.454 100$ different ones.

NOTE Confidence: 0.86971958

 $00:58:27.454 \longrightarrow 00:58:29.160$ Do they all have the same kind of,

NOTE Confidence: 0.86971958

00:58:29.160 --> 00:58:30.280 you know, break points?

NOTE Confidence: 0.86971958

 $00:58:30.280 \longrightarrow 00:58:31.400$ Does it change expression?

NOTE Confidence: 0.86971958

00:58:31.400 --> 00:58:32.200 Do you see any variability

NOTE Confidence: 0.86971958

 $00:58:32.200 \longrightarrow 00:58:33.240$ in the kind of those fusion

NOTE Confidence: 0.8879313061111111

 $00{:}58{:}33.240 \dashrightarrow 00{:}58{:}35.724$ partners? Yeah, it's a good question

NOTE Confidence: 0.887931306111111

 $00{:}58{:}35.724 \dashrightarrow 00{:}58{:}38.265$ that's been asked for many decades

NOTE Confidence: 0.887931306111111

 $00:58:38.265 \longrightarrow 00:58:40.677$ and not been answered very well,

00:58:40.680 --> 00:58:42.144 at least in patient samples because

NOTE Confidence: 0.887931306111111

00:58:42.144 --> 00:58:43.716 it's hard to get enough patient

NOTE Confidence: 0.887931306111111

00:58:43.716 --> 00:58:45.620 samples of these subtypes to to ever

NOTE Confidence: 0.887931306111111

 $00:58:45.620 \longrightarrow 00:58:47.080$ really do that experiment. Well,

NOTE Confidence: 0.895308128

 $00:58:49.400 \longrightarrow 00:58:50.880$ at least for the fusion,

NOTE Confidence: 0.895308128

 $00:58:50.880 \longrightarrow 00:58:52.518$ the different fusion AM LS we've

NOTE Confidence: 0.895308128

 $00{:}58{:}52.518 \dashrightarrow 00{:}58{:}53.989$ assessed and that have been

NOTE Confidence: 0.895308128

00:58:53.989 --> 00:58:55.670 assessed in patients, it doesn't.

NOTE Confidence: 0.895308128

 $00{:}58{:}55.670 \dashrightarrow 00{:}58{:}58.155$ It's not clear that the fusion partner

NOTE Confidence: 0.895308128

 $00:58:58.160 \longrightarrow 00:59:01.800$ is determining men and responsiveness.

NOTE Confidence: 0.895308128

 $00:59:01.800 \longrightarrow 00:59:03.740$ Is the fusion partner influencing

NOTE Confidence: 0.895308128

 $00{:}59{:}03.740 \dashrightarrow 00{:}59{:}05.680$ the phenotype of the leukemia?

NOTE Confidence: 0.895308128

 $00:59:05.680 \longrightarrow 00:59:09.500$ I think that question still still

NOTE Confidence: 0.895308128

 $00{:}59{:}09.500 \dashrightarrow 00{:}59{:}12.270$ open and there's aren't enough good

NOTE Confidence: 0.895308128

 $00:59:12.270 \longrightarrow 00:59:14.240$ models to really answer that question.

NOTE Confidence: 0.69459664625

 $00:59:18.360 \longrightarrow 00:59:20.560$ If you delete the at least for AF9,

00:59:20.560 --> 00:59:23.080 if you delete the C turn much of the AF9,

NOTE Confidence: 0.69459664625

 $00:59:23.080 \longrightarrow 00:59:24.760$ it will no longer be transforming.

NOTE Confidence: 0.69459664625

 $00:59:24.760 \longrightarrow 00:59:26.800$ So that fusion partner is important

NOTE Confidence: 0.68397459

00:59:29.080 --> 00:59:30.599 and and in the AF9 setting,

NOTE Confidence: 0.68397459

 $00{:}59{:}30.600 \dashrightarrow 00{:}59{:}31.965$ we think it's important because

NOTE Confidence: 0.68397459

 $00:59:31.965 \longrightarrow 00:59:33.890$ that's the anchor to drop to pull

NOTE Confidence: 0.68397459

 $00:59:33.890 \longrightarrow 00:59:35.155$ all those other complexes in.

NOTE Confidence: 0.68397459

 $00:59:35.160 \longrightarrow 00:59:37.477$ But it's that's a nice simple answer.

NOTE Confidence: 0.68397459

 $00:59:37.480 \longrightarrow 00:59:38.945$ It's not that simple because

NOTE Confidence: 0.68397459

 $00{:}59{:}38.945 \dashrightarrow 00{:}59{:}40.410$ some of the fusion proteins

NOTE Confidence: 0.68397459

 $00:59{:}40.468 \dashrightarrow 00{:}59{:}42.038$ don't bind to those complexes.

NOTE Confidence: 0.68397459

 $00:59:42.040 \longrightarrow 00:59:44.520$ So what they're doing is, is less clear,

NOTE Confidence: 0.9703975

 $00{:}59{:}46.560 {\: --> \:} 00{:}59{:}48.225$ beautiful talk. Thank you.

NOTE Confidence: 0.9703975

 $00:59:48.225 \longrightarrow 00:59:50.200$ Obviously there are lots of

NOTE Confidence: 0.9703975

 $00:59:50.200 \longrightarrow 00:59:51.720$ other chromatin complexes,

00:59:51.720 --> 00:59:53.800 switch, sniff, polychrome, etcetera.

NOTE Confidence: 0.751410632222222

 $00:59:53.800 \longrightarrow 00:59:56.400$ Any any thoughts on those?

NOTE Confidence: 0.751410632222222

00:59:56.400 --> 00:59:58.110 Are you looking at any exploring

NOTE Confidence: 0.751410632222222

 $00:59:58.110 \longrightarrow 01:00:01.600$ any of those other chromatin?

NOTE Confidence: 0.751410632222222

 $01:00:02.080 \longrightarrow 01:00:03.800$ Yeah, accessibility.

NOTE Confidence: 0.751410632222222

01:00:03.800 --> 01:00:05.360 Epigenetic complexes?

NOTE Confidence: 0.760728562

01:00:05.360 --> 01:00:10.899 Sure. So we have over time looked at

NOTE Confidence: 0.760728562

01:00:10.899 --> 01:00:15.020 the Polycom complex mostly in leukemia

NOTE Confidence: 0.760728562

 $01:00:15.020 \longrightarrow 01:00:17.778$ and it for whatever reason and this is

NOTE Confidence: 0.760728562

01:00:17.778 --> 01:00:19.388 going to be right contradictory to how

NOTE Confidence: 0.760728562

 $01:00:19.388 \longrightarrow 01:00:21.152$ I answered one of my previous questions.

NOTE Confidence: 0.760728562

01:00:21.160 --> 01:00:23.645 The Polycom complex does seem

NOTE Confidence: 0.760728562

01:00:23.645 --> 01:00:26.864 to be important in the continued

NOTE Confidence: 0.760728562

 $01:00:26.864 \longrightarrow 01:00:30.200$ proliferation of many types of leukemia.

NOTE Confidence: 0.760728562

01:00:30.200 --> 01:00:34.004 How that's working and why hard to know,

NOTE Confidence: 0.760728562

 $01{:}00{:}34.004 \dashrightarrow 01{:}00{:}37.250$ but the small molecule PRC 2

01:00:37.250 --> 01:00:40.400 inhibitors or or EZH 2 inhibitors

NOTE Confidence: 0.760728562

01:00:40.400 --> 01:00:41.856 don't have tremendous activity.

NOTE Confidence: 0.760728562

 $01:00:41.856 \longrightarrow 01:00:44.474$ So whether or not it's the enzymatic

NOTE Confidence: 0.760728562

 $01:00:44.474 \longrightarrow 01:00:47.064$ activity versus some other part of the

NOTE Confidence: 0.760728562

01:00:47.064 --> 01:00:49.439 complex at least in leukemia anyway,

NOTE Confidence: 0.760728562

 $01:00:49.440 \longrightarrow 01:00:50.352 \text{ I don't know}.$

NOTE Confidence: 0.760728562

01:00:50.352 --> 01:00:52.480 And I think that probably it brings

NOTE Confidence: 0.760728562

01:00:52.548 --> 01:00:55.706 up a good point that and we've

NOTE Confidence: 0.760728562

 $01:00:55.706 \longrightarrow 01:00:56.917$ done this in the past as well,

NOTE Confidence: 0.760728562

 $01:00:56.920 \longrightarrow 01:00:59.433$ but we have to be careful about

NOTE Confidence: 0.760728562

 $01:00:59.433 \longrightarrow 01:01:01.572$ the thought process that enzymatic

NOTE Confidence: 0.760728562

 $01:01:01.572 \longrightarrow 01:01:03.780$ inhibition of a protein in one of

NOTE Confidence: 0.760728562

 $01{:}01{:}03.780 \dashrightarrow 01{:}01{:}05.780$ these complexes is the same thing as

NOTE Confidence: 0.760728562

 $01:01:05.780 \longrightarrow 01:01:07.595$ complete interactivation of the protein.

NOTE Confidence: 0.760728562

 $01:01:07.600 \longrightarrow 01:01:09.280$ It's not and we now seen that

 $01:01:09.280 \longrightarrow 01:01:10.000$ many different times.

NOTE Confidence: 0.760728562

 $01:01:10.000 \longrightarrow 01:01:12.982$ So the enzymatic part of the

NOTE Confidence: 0.760728562

01:01:12.982 --> 01:01:14.473 proteins is important,

NOTE Confidence: 0.760728562

 $01:01:14.480 \longrightarrow 01:01:16.030$ but there's probably a structural

NOTE Confidence: 0.760728562

 $01:01:16.030 \longrightarrow 01:01:17.895$ component to this that when you

NOTE Confidence: 0.760728562

01:01:17.895 --> 01:01:19.449 take the protein completely out and

NOTE Confidence: 0.760728562

01:01:19.449 --> 01:01:21.514 this is the same way for EZH 2 the

NOTE Confidence: 0.760728562

 $01:01:21.514 \longrightarrow 01:01:23.398$ the changes are much more dramatic.

NOTE Confidence: 0.760728562

 $01{:}01{:}23.400 \dashrightarrow 01{:}01{:}25.452$ So it gets to the question as to what

NOTE Confidence: 0.760728562

01:01:25.452 --> 01:01:27.274 his some modifications are doing and

NOTE Confidence: 0.760728562

 $01:01:27.274 \longrightarrow 01:01:30.038$ that gets to even more deep and complicated.

NOTE Confidence: 0.760728562

 $01:01:30.040 \longrightarrow 01:01:31.840$ But so long answer to yes,

NOTE Confidence: 0.760728562

 $01:01:31.840 \longrightarrow 01:01:32.840$ we've looked at the complexes,

NOTE Confidence: 0.760728562

 $01:01:32.840 \longrightarrow 01:01:35.876$ we haven't looked much at the

NOTE Confidence: 0.760728562

 $01:01:35.876 \longrightarrow 01:01:37.394$ chromatin remodeling complexes.

NOTE Confidence: 0.760728562

 $01:01:37.400 \longrightarrow 01:01:40.316$ Segal Kadosh who some of you may know is

 $01:01:40.320 \longrightarrow 01:01:42.440$ at Dana Farber and we just let her do that.

NOTE Confidence: 0.760728562

 $01:01:42.440 \longrightarrow 01:01:46.240$ She they're doing a lot in that regard.

NOTE Confidence: 0.760728562

01:01:46.240 --> 01:01:47.717 I'm sure they're playing a role here.

NOTE Confidence: 0.760728562

01:01:47.720 --> 01:01:50.480 What but how and what we don't know.

NOTE Confidence: 0.785801059333333

 $01:01:51.360 \longrightarrow 01:01:53.648$ We have one last question and after this

NOTE Confidence: 0.785801059333333

 $01:01:53.648 \longrightarrow 01:01:55.760$ is actually a session for the trainees,

NOTE Confidence: 0.785801059333333

01:01:55.760 --> 01:01:58.200 very private was Doctor Armstrong.

NOTE Confidence: 0.9075081125

 $01:01:58.880 \longrightarrow 01:02:00.168$ Yeah, one last question.

NOTE Confidence: 0.9075081125

 $01:02:00.168 \longrightarrow 01:02:01.456$ This is actually related

NOTE Confidence: 0.9075081125

 $01:02:01.456 \longrightarrow 01:02:03.079$ to the fusion partners,

NOTE Confidence: 0.9075081125

 $01:02:03.080 \longrightarrow 01:02:04.718$ but as you know we often get,

NOTE Confidence: 0.9075081125

01:02:04.720 --> 01:02:06.547 you know when we do the genetech

NOTE Confidence: 0.9075081125

 $01{:}02{:}06.547 \dashrightarrow 01{:}02{:}08.120$ sequencing we get MLL deletions,

NOTE Confidence: 0.9075081125

01:02:08.120 --> 01:02:09.346 MLL mutations,

NOTE Confidence: 0.9075081125

01:02:09.346 --> 01:02:13.637 sometimes Trisom 11 or you know PDD.

 $01:02:13.640 \longrightarrow 01:02:16.190$ And is your sense that beyond

NOTE Confidence: 0.9075081125

01:02:16.190 --> 01:02:18.639 the fusion MLL Fusion's those

NOTE Confidence: 0.9075081125

01:02:18.639 --> 01:02:20.720 alterations also have susceptibility

NOTE Confidence: 0.9075081125

 $01:02:20.720 \longrightarrow 01:02:23.160$ to an inhibition or yeah,

NOTE Confidence: 0.888833029285714

 $01:02:23.280 \longrightarrow 01:02:25.135$ as you probably know since you've been

NOTE Confidence: 0.888833029285714

01:02:25.135 --> 01:02:26.840 important in running some of the trials,

NOTE Confidence: 0.888833029285714

01:02:26.840 --> 01:02:30.862 the MLLPTD subtype of AML for

NOTE Confidence: 0.888833029285714

 $01{:}02{:}30.862 \dashrightarrow 01{:}02{:}33.154$ some of the trials is included.

NOTE Confidence: 0.888833029285714

 $01:02:33.160 \longrightarrow 01:02:35.505$ There's been an assumption to some extent

NOTE Confidence: 0.888833029285714

 $01:02:35.505 \longrightarrow 01:02:37.830$ that they should be responsive the PD.

NOTE Confidence: 0.888833029285714

 $01{:}02{:}37.830 \dashrightarrow 01{:}02{:}39.360$ So we have generated some MLL.

NOTE Confidence: 0.888833029285714

 $01{:}02{:}39.360 \dashrightarrow 01{:}02{:}41.358$ So MLLPTDS are actually a partial

NOTE Confidence: 0.888833029285714

 $01:02:41.358 \longrightarrow 01:02:43.560$ tandem duplication of a part of the

NOTE Confidence: 0.888833029285714

 $01:02:43.560 \longrightarrow 01:02:45.824$ MLL protein and that subset of AML is

NOTE Confidence: 0.888833029285714

01:02:45.824 --> 01:02:47.750 incredibly difficult to treat and it's

NOTE Confidence: 0.888833029285714

01:02:47.750 --> 01:02:51.558 also found in MD's those mutations,

 $01:02:51.560 \longrightarrow 01:02:53.864$ but that almost tells you immediately

NOTE Confidence: 0.888833029285714

01:02:53.864 --> 01:02:55.703 it's also found in MDSMLL.

NOTE Confidence: 0.888833029285714

 $01:02:55.703 \longrightarrow 01:02:57.824$ Rearrangements are not found in MDS that

NOTE Confidence: 0.888833029285714

01:02:57.824 --> 01:02:59.083 they're probably something different

NOTE Confidence: 0.888833029285714

 $01:02:59.083 \longrightarrow 01:03:00.901$ going on in the minute inhibitor

NOTE Confidence: 0.888833029285714

 $01:03:00.901 \longrightarrow 01:03:02.555$ doesn't have at least in our PDX

NOTE Confidence: 0.888833029285714

 $01:03:02.555 \longrightarrow 01:03:04.422$ models the same type of activity in

NOTE Confidence: 0.888833029285714

 $01:03:04.422 \longrightarrow 01:03:07.439$ those PDX as it does MLL rearranged.

NOTE Confidence: 0.888833029285714

 $01{:}03{:}07.440 \dashrightarrow 01{:}03{:}09.978$ So I think it gets back to this issue

NOTE Confidence: 0.888833029285714

 $01{:}03{:}09.978 \dashrightarrow 01{:}03{:}12.349$ that we've been discussing that in

NOTE Confidence: 0.888833029285714

 $01:03:12.349 \longrightarrow 01:03:15.080$ that setting either because of that

NOTE Confidence: 0.888833029285714

 $01{:}03{:}15.080 \dashrightarrow 01{:}03{:}17.816$ duplication or otherwise the that MLL

NOTE Confidence: 0.888833029285714

 $01{:}03{:}17.816 \dashrightarrow 01{:}03{:}19.976$ Oncoprotein sticks on chromatin through

NOTE Confidence: 0.888833029285714

 $01:03:19.976 \longrightarrow 01:03:22.280$ a different mechanism than Menon.

NOTE Confidence: 0.888833029285714

01:03:22.280 --> 01:03:24.560 So we're got a project looking

 $01:03:24.560 \longrightarrow 01:03:25.760$ at exactly that,

NOTE Confidence: 0.888833029285714

 $01{:}03{:}25.760 \to 01{:}03{:}28.400$ trying to understand what that is.

NOTE Confidence: 0.888833029285714

 $01{:}03{:}28.400 \dashrightarrow 01{:}03{:}29.840$ We haven't looked at the deletions.

NOTE Confidence: 0.888833029285714

 $01{:}03{:}29.840 \dashrightarrow 01{:}03{:}30.878$ I wouldn't predict they would be.