WEBVTT

00:00:00.000 --> 00:00:02.420 Support for Yale Cancer Answers

NOTE Confidence: 0.938980102539063

 $00:00:02.420 \longrightarrow 00:00:04.840$ comes from AstraZeneca, working

NOTE Confidence: 0.938980102539063

 $00:00:04.919 \longrightarrow 00:00:07.259$ side by side with leading

NOTE Confidence: 0.938980102539063

 $00:00:07.259 \longrightarrow 00:00:09.599$ scientists to better understand how

NOTE Confidence: 0.938980102539063

 $00:00:09.683 \longrightarrow 00:00:15.611$ complex data can be converted into

NOTE Confidence: 0.938980102539063

 $00:00:15.611 \longrightarrow 00:00:16.599$ innovative treatments. More information at

astrazeneca-us.com.

NOTE Confidence: 0.938980102539063

 $00:00:16.600 \longrightarrow 00:00:18.412$ Welcome to Yale Cancer Answers with

NOTE Confidence: 0.938980102539063

 $00:00:18.412 \longrightarrow 00:00:20.749$ your host doctor Anees Chagpar.

NOTE Confidence: 0.938980102539063

00:00:20.749 --> 00:00:22.534 Yale Cancer Answers features the

NOTE Confidence: 0.938980102539063

 $00:00:22.534 \longrightarrow 00:00:24.345$ latest information on cancer care

NOTE Confidence: 0.938980102539063

 $00{:}00{:}24.345 \dashrightarrow 00{:}00{:}25.729$ by welcoming on cologists and

NOTE Confidence: 0.938980102539063

 $00:00:25.729 \longrightarrow 00:00:27.436$ specialists who are on the

NOTE Confidence: 0.938980102539063

 $00:00:27.436 \longrightarrow 00:00:29.434$ forefront of the battle to fight

NOTE Confidence: 0.938980102539063

 $00{:}00{:}29.434 --> 00{:}00{:}31.190$ cancer. This week it's a

NOTE Confidence: 0.938980102539063

 $00:00:31.190 \longrightarrow 00:00:32.570$ conversation about deep learning

 $00:00:32.570 \longrightarrow 00:00:34.319$ and cancer outcomes with Doctor

NOTE Confidence: 0.938980102539063

 $00{:}00{:}34.319 --> 00{:}00{:}36.702$ Sanjay Aneja. Doctor Aneja is

NOTE Confidence: 0.938980102539063

 $00:00:36.702 \longrightarrow 00:00:38.154$ an assistant professor of

NOTE Confidence: 0.938980102539063

 $00:00:38.154 \longrightarrow 00:00:39.802$ therapeutic radiology at the Yale

NOTE Confidence: 0.938980102539063

00:00:39.802 --> 00:00:41.538 School of Medicine, where doctor

NOTE Confidence: 0.938980102539063

00:00:41.538 --> 00:00:44.142 Chagpar is a professor of

NOTE Confidence: 0.938980102539063

 $00:00:44.142 \longrightarrow 00:00:45.310$ surgical oncology.

NOTE Confidence: 0.917408168315887

00:00:45.310 --> 00:00:46.815 Maybe we can start

NOTE Confidence: 0.917408168315887

00:00:46.815 --> 00:00:48.978 off by you telling us a little

NOTE Confidence: 0.917408168315887

 $00{:}00{:}48.978 \dashrightarrow 00{:}00{:}50.478$ bit about yourself and about

NOTE Confidence: 0.917408168315887

00:00:50.480 --> 00:00:51.380 your research?

NOTE Confidence: 0.917408168315887

 $00:00:51.380 \longrightarrow 00:00:53.830$ Sure, I've been in New Haven since 2009.

NOTE Confidence: 0.917408168315887

 $00{:}00{:}53.830 \dashrightarrow 00{:}00{:}55.612$ I was actually a Yale medical

NOTE Confidence: 0.917408168315887

 $00{:}00{:}55.612 \dashrightarrow 00{:}00{:}57.470$ student and I stayed here for

NOTE Confidence: 0.917408168315887

00:00:57.470 --> 00:00:59.294 my residency and now on faculty.

 $00:00:59.300 \longrightarrow 00:01:00.795$ Clinically, I am a radiation

NOTE Confidence: 0.917408168315887

00:01:00.795 --> 00:01:02.290 Oncologist and I primarily treat

NOTE Confidence: 0.917408168315887

 $00:01:02.344 \longrightarrow 00:01:04.156$ tumors of the central nervous system.

NOTE Confidence: 0.917408168315887

 $00:01:04.160 \longrightarrow 00:01:05.680$ So brain tumors as well

NOTE Confidence: 0.917408168315887

 $00:01:05.680 \longrightarrow 00:01:06.896$ as some prostate cancer.

NOTE Confidence: 0.917408168315887

00:01:06.900 --> 00:01:09.042 But I also run a large research group which

NOTE Confidence: 0.917408168315887

 $00:01:09.042 \longrightarrow 00:01:11.460$ is primarily focused on Applied Mathematics.

NOTE Confidence: 0.917408168315887

00:01:11.460 --> 00:01:13.320 My background is in applied mathematics, it's

NOTE Confidence: 0.917408168315887

 $00:01:13.320 \longrightarrow 00:01:15.469$ always something that I was very interested in.

NOTE Confidence: 0.917408168315887

00:01:15.470 --> 00:01:17.295 And what we're particularly interested

NOTE Confidence: 0.917408168315887

 $00{:}01{:}17.295 \dashrightarrow 00{:}01{:}20.401$ in in my lab is looking at the utility

NOTE Confidence: 0.917408168315887

00:01:20.401 --> 00:01:22.025 of machine learning techniques,

NOTE Confidence: 0.917408168315887

 $00{:}01{:}22.030 \dashrightarrow 00{:}01{:}23.510$ specifically deep learning in

NOTE Confidence: 0.917408168315887

 $00:01:23.510 \longrightarrow 00:01:24.990$ improving cancer outcomes and

NOTE Confidence: 0.917408168315887

 $00:01:24.990 \longrightarrow 00:01:26.280$ modeling cancer processes.

NOTE Confidence: 0.917408168315887

 $00:01:26.280 \longrightarrow 00:01:27.820$ I was with you

 $00:01:27.820 \longrightarrow 00:01:30.136$ all the way

NOTE Confidence: 0.932632088661194

 $00:01:30.136 \longrightarrow 00:01:31.680$ up to applied mathematics

NOTE Confidence: 0.932632088661194

00:01:31.680 --> 00:01:33.870 and machine learning and deep learning

NOTE Confidence: 0.932632088661194

 $00:01:33.870 \longrightarrow 00:01:37.088$ and all of that sounds really deep.

NOTE Confidence: 0.932632088661194

 $00:01:37.090 \longrightarrow 00:01:39.430$ But can you break it down

NOTE Confidence: 0.932632088661194

 $00:01:39.430 \longrightarrow 00:01:41.330$ into simple terms for us?

NOTE Confidence: 0.932632088661194

00:01:41.330 --> 00:01:44.030 What exactly are you doing?

NOTE Confidence: 0.935569607294523

 $00:01:44.030 \longrightarrow 00:01:45.346$ That's a good question,

NOTE Confidence: 0.935569607294523

00:01:45.346 --> 00:01:47.953 I think that we're very interested in that

NOTE Confidence: 0.935569607294523

 $00{:}01{:}47.953 \dashrightarrow 00{:}01{:}50.249$ we have such a large amount of health care

NOTE Confidence: 0.935569607294523

 $00:01:50.317 \longrightarrow 00:01:52.549$ data that's currently available to us

NOTE Confidence: 0.935569607294523

 $00:01:52.550 \longrightarrow 00:01:54.296$ that's been kind of cultivated over

NOTE Confidence: 0.935569607294523

 $00{:}01{:}54.296 \to 00{:}01{:}55.950$ years of managing cancer patients,

NOTE Confidence: 0.935569607294523

 $00{:}01{:}55.950 \dashrightarrow 00{:}01{:}58.134$ and what we'd like to do is develop

NOTE Confidence: 0.935569607294523

 $00{:}01{:}58.134 \dashrightarrow 00{:}02{:}00.078$ methods to better model that data so

 $00:02:00.078 \longrightarrow 00:02:02.598$ that we can kind of use that information

NOTE Confidence: 0.935569607294523

 $00{:}02{:}02{:}02{:}598 \dashrightarrow 00{:}02{:}04{.}842$ to better improve the health care

NOTE Confidence: 0.935569607294523

 $00:02:04.842 \longrightarrow 00:02:06.760$ outcomes for cancer patients moving forward.

NOTE Confidence: 0.935569607294523

 $00:02:06.760 \longrightarrow 00:02:08.265$ Machine learning is just one

NOTE Confidence: 0.935569607294523

 $00:02:08.265 \longrightarrow 00:02:10.160$ way in which we do that.

NOTE Confidence: 0.935569607294523

00:02:10.160 --> 00:02:10.480 Traditionally,

NOTE Confidence: 0.935569607294523

 $00:02:10.480 \longrightarrow 00:02:12.720$ the way in which we used to

NOTE Confidence: 0.935569607294523

 $00:02:12.720 \longrightarrow 00:02:14.179$ model cancer as a disease

NOTE Confidence: 0.935569607294523

 $00:02:14.180 \longrightarrow 00:02:16.364$ it's always been a very difficult process.

NOTE Confidence: 0.935569607294523

 $00:02:16.370 \longrightarrow 00:02:18.656$ We would look at factors

NOTE Confidence: 0.935569607294523

 $00:02:18.656 \longrightarrow 00:02:20.889$ that physicians thought were important,

NOTE Confidence: 0.935569607294523

 $00:02:20.890 \longrightarrow 00:02:22.986$ and then we put them in a model

NOTE Confidence: 0.935569607294523

 $00:02:22.986 \longrightarrow 00:02:25.349$ and then we kind of look at an

NOTE Confidence: 0.935569607294523

 $00:02:25.349 \longrightarrow 00:02:27.849$ average and that had a couple

NOTE Confidence: 0.935569607294523

 $00:02:27.849 \longrightarrow 00:02:29.939$ different problems associated with it.

NOTE Confidence: 0.935569607294523

 $00:02:29.940 \longrightarrow 00:02:31.716$ One is that physicians aren't really

00:02:31.716 --> 00:02:33.315 great at predicting what factors

NOTE Confidence: 0.935569607294523

 $00:02:33.315 \longrightarrow 00:02:35.100$ are actually associated with cancer.

NOTE Confidence: 0.935569607294523

 $00:02:35.100 \longrightarrow 00:02:36.408$ It's a really complex disease.

NOTE Confidence: 0.935569607294523

 $00:02:36.408 \longrightarrow 00:02:38.370$ The second thing is that cancer

NOTE Confidence: 0.935569607294523

 $00:02:38.427 \longrightarrow 00:02:39.947$ is very difficult to model,

NOTE Confidence: 0.935569607294523

 $00:02:39.950 \longrightarrow 00:02:42.310$ and so using some of these techniques that

NOTE Confidence: 0.935569607294523

00:02:42.310 --> 00:02:44.790 we were developing a number of years ago,

NOTE Confidence: 0.935569607294523

 $00:02:44.790 \longrightarrow 00:02:46.134$ those techniques weren't

NOTE Confidence: 0.935569607294523

 $00:02:46.134 \longrightarrow 00:02:47.478$ necessarily as effective.

NOTE Confidence: 0.935569607294523

 $00:02:47.480 \longrightarrow 00:02:49.106$ Machine learning is sort of an

NOTE Confidence: 0.935569607294523

00:02:49.106 --> 00:02:50.480 advanced form of modeling data.

NOTE Confidence: 0.935569607294523

 $00:02:50.480 \longrightarrow 00:02:52.568$ What it does is it takes in all

NOTE Confidence: 0.935569607294523

00:02:52.568 --> 00:02:53.490 types of data,

NOTE Confidence: 0.935569607294523

 $00{:}02{:}53.490 \dashrightarrow 00{:}02{:}55.158$ so it doesn't really require the

NOTE Confidence: 0.935569607294523

 $00:02:55.158 \longrightarrow 00:02:57.109$ physician to make any sort of choices

00:02:57.109 --> 00:02:58.943 about what type of data to include,

NOTE Confidence: 0.935569607294523

 $00{:}02{:}58.950 \dashrightarrow 00{:}03{:}00.770$ and it allows us to model very

NOTE Confidence: 0.935569607294523

 $00:03:00.770 \longrightarrow 00:03:01.950$ complex processes like cancer,

NOTE Confidence: 0.935569607294523

 $00:03:01.950 \longrightarrow 00:03:03.693$ and there's been a lot of effort

NOTE Confidence: 0.935569607294523

 $00:03:03.693 \longrightarrow 00:03:05.673$ within our group to show that machine

NOTE Confidence: 0.935569607294523

 $00:03:05.673 \longrightarrow 00:03:07.437$ learning methods are probably the best

NOTE Confidence: 0.935569607294523

 $00:03:07.493 \longrightarrow 00:03:09.589$ way in which we can model cancer outcomes,

NOTE Confidence: 0.935569607294523

 $00:03:09.590 \longrightarrow 00:03:11.228$ and so that's what we're particularly

NOTE Confidence: 0.929244518280029

 $00:03:11.230 \longrightarrow 00:03:13.494$ interested in.

NOTE Confidence: 0.929244518280029

 $00:03:13.494 \longrightarrow 00:03:15.865$ Can you give us an example of how you did that

in your lab?

 $00{:}03{:}18.400 \dashrightarrow 00{:}03{:}20.620$ The concept of taking large amounts of data variance.

ables

NOTE Confidence: 0.929244518280029

00:03:20.620 --> 00:03:22.810 of various sorts that physicians may

NOTE Confidence: 0.929244518280029

 $00:03:22.810 \longrightarrow 00:03:25.378$ or may not think are relevant at all,

NOTE Confidence: 0.929244518280029

00:03:25.380 --> 00:03:27.816 giving it to a computer and saying,

NOTE Confidence: 0.929244518280029

 $00:03:27.820 \longrightarrow 00:03:30.916$ hey, look at all of this data and see

 $00:03:30.916 \longrightarrow 00:03:33.406$ whether or not any of these things,

NOTE Confidence: 0.929244518280029

 $00{:}03{:}33.410 \dashrightarrow 00{:}03{:}35.559$ or a combination of these things may

NOTE Confidence: 0.929244518280029

 $00:03:35.559 \longrightarrow 00:03:37.599$ actually predict a particular outcome.

NOTE Confidence: 0.929244518280029

 $00:03:37.600 \longrightarrow 00:03:40.036$ Am I on the right track?

NOTE Confidence: 0.929244518280029

 $00:03:40.040 \longrightarrow 00:03:40.740$ Yeah, definitely.

00:03:41.090 --> 00:03:43.526 I think the one benefit of machine learning,

NOTE Confidence: 0.939530432224274

 $00:03:43.530 \longrightarrow 00:03:45.530$ compared to more traditional techniques

NOTE Confidence: 0.939530432224274

 $00:03:45.530 \longrightarrow 00:03:48.392$ of modeling cancer data is that it allows

NOTE Confidence: 0.939530432224274

 $00{:}03{:}48.392 \dashrightarrow 00{:}03{:}50.930$ us to look at all the various resources.

NOTE Confidence: 0.939530432224274

00:03:52.640 --> 00:03:54.390 An example of a project that

NOTE Confidence: 0.939530432224274

 $00{:}03{:}54.390 \longrightarrow 00{:}03{:}56.647$ we've done in our lab is trying to

NOTE Confidence: 0.939530432224274

00:03:56.647 --> 00:03:58.092 model the outcomes for patients

NOTE Confidence: 0.939530432224274

 $00:03:58.155 \longrightarrow 00:03:59.770$ with early stage lung cancer.

NOTE Confidence: 0.939530432224274

 $00{:}03{:}59.770 \dashrightarrow 00{:}04{:}01.674$ And so what we do in clinical practice

NOTE Confidence: 0.939530432224274

 $00:04:01.674 \longrightarrow 00:04:03.655$ is that we look at various different

NOTE Confidence: 0.939530432224274

 $00:04:03.655 \longrightarrow 00:04:05.495$ things when we're trying to model

00:04:05.495 --> 00:04:07.175 early stage lung cancer patients.

NOTE Confidence: 0.939530432224274

 $00{:}04{:}07.180 \dashrightarrow 00{:}04{:}08.610$ We look at certain demographic

NOTE Confidence: 0.939530432224274

 $00:04:08.610 \longrightarrow 00:04:10.644$ variables like your age and if they're

NOTE Confidence: 0.939530432224274

00:04:10.644 --> 00:04:12.306 smoking and things of that nature,

NOTE Confidence: 0.939530432224274

 $00:04:12.310 \longrightarrow 00:04:14.174$ we also look at the images to see

NOTE Confidence: 0.939530432224274

 $00:04:14.174 \longrightarrow 00:04:16.069$ how big the tumor looks and whether

NOTE Confidence: 0.939530432224274

 $00:04:16.069 \longrightarrow 00:04:18.237$ or not it's close to any structures

NOTE Confidence: 0.939530432224274

 $00:04:18.237 \longrightarrow 00:04:19.717$ that we're worried about.

NOTE Confidence: 0.939530432224274

 $00:04:19.720 \longrightarrow 00:04:21.496$ And then we also look at

NOTE Confidence: 0.939530432224274

 $00:04:21.500 \longrightarrow 00:04:23.236$ what are treatment plans are

NOTE Confidence: 0.939530432224274

 $00:04:23.236 \longrightarrow 00:04:25.350$ and so how well we can deliver radiation

NOTE Confidence: 0.939530432224274

 $00:04:25.350 \longrightarrow 00:04:27.577$ to treat those and those are kind

NOTE Confidence: 0.939530432224274

 $00{:}04{:}27.577 \dashrightarrow 00{:}04{:}29.281$ of three different data sources of

NOTE Confidence: 0.939530432224274

 $00:04:29.281 \longrightarrow 00:04:31.509$ sorts that we use in clinic in order

NOTE Confidence: 0.939530432224274

00:04:31.509 --> 00:04:33.327 to determine whether or not a patient

NOTE Confidence: 0.939530432224274

 $00{:}04{:}33.327 \dashrightarrow 00{:}04{:}35.220$ will have a good outcome or bad outcome.

 $00:04:35.220 \longrightarrow 00:04:36.648$ And currently the only models that

NOTE Confidence: 0.939530432224274

 $00:04:36.648 \longrightarrow 00:04:38.144$ we actually have to tell patients

NOTE Confidence: 0.939530432224274

 $00:04:38.144 \longrightarrow 00:04:39.626$ how their outcomes would be are

NOTE Confidence: 0.939530432224274

00:04:39.626 --> 00:04:41.140 using only demographic variables,

NOTE Confidence: 0.939530432224274

00:04:41.140 --> 00:04:43.284 and so they're not really using the pictures,

NOTE Confidence: 0.939530432224274

00:04:43.290 --> 00:04:44.898 and they're not really using the

NOTE Confidence: 0.939530432224274

00:04:44.898 --> 00:04:45.702 treatment planning information,

NOTE Confidence: 0.939530432224274

 $00{:}04{:}45.710 \dashrightarrow 00{:}04{:}47.334$ and the reason for that is because

NOTE Confidence: 0.939530432224274

00:04:47.334 --> 00:04:48.345 that data isn't necessarily

NOTE Confidence: 0.939530432224274

 $00:04:48.345 \longrightarrow 00:04:49.929$ something that you can put into

NOTE Confidence: 0.939530432224274

 $00:04:49.929 \longrightarrow 00:04:51.659$ some of those traditional models.

NOTE Confidence: 0.939530432224274

 $00:04:51.660 \longrightarrow 00:04:53.740$ What we did is we developed a deep

NOTE Confidence: 0.939530432224274

 $00{:}04{:}53.792 \dashrightarrow 00{:}04{:}55.620$ learning machine learning algorithm.

NOTE Confidence: 0.939530432224274

 $00{:}04{:}55.620 \dashrightarrow 00{:}04{:}57.108$ So it's an algorithm that takes

NOTE Confidence: 0.939530432224274

 $00{:}04{:}57.108 \dashrightarrow 00{:}04{:}59.129$ the rawest form of the data from

 $00:04:59.129 \longrightarrow 00:05:00.429$ the electronic medical record,

NOTE Confidence: 0.939530432224274

 $00{:}05{:}00.430 \dashrightarrow 00{:}05{:}02.128$ it pulls that demographic data from

NOTE Confidence: 0.939530432224274

00:05:02.128 --> 00:05:03.260 the electronic medical record,

NOTE Confidence: 0.939530432224274

 $00:05:03.260 \longrightarrow 00:05:04.952$ it takes every pixel from every

NOTE Confidence: 0.939530432224274

 $00:05:04.952 \longrightarrow 00:05:06.694$ picture of the tumor and analyzes

NOTE Confidence: 0.939530432224274

 $00:05:06.694 \longrightarrow 00:05:08.633$ those pixels in a very unique way.

NOTE Confidence: 0.939530432224274

 $00{:}05{:}08.640 \dashrightarrow 00{:}05{:}10.616$ And then it also looks at every little

NOTE Confidence: 0.939530432224274

 $00:05:10.616 \longrightarrow 00:05:12.117$ part of our radiation treatment

NOTE Confidence: 0.939530432224274

 $00:05:12.117 \longrightarrow 00:05:14.013$ plan down to the pixel level.

NOTE Confidence: 0.939530432224274

 $00:05:14.020 \longrightarrow 00:05:15.651$ It kind of coalesces all that information

NOTE Confidence: 0.939530432224274

 $00{:}05{:}15.651 \dashrightarrow 00{:}05{:}17.409$ and derives a personalized prediction,

NOTE Confidence: 0.939530432224274

 $00:05:17.410 \longrightarrow 00:05:19.108$ which we found was better than

NOTE Confidence: 0.939530432224274

 $00:05:19.594 \longrightarrow 00:05:21.046$ sort of getting an average based

NOTE Confidence: 0.939530432224274

 $00:05:21.046 \longrightarrow 00:05:22.788$ on just the demographic variables

NOTE Confidence: 0.915503346920013

 $00:05:22.790 \longrightarrow 00:05:24.630$ alone. So basically it's

NOTE Confidence: 0.915503346920013

 $00:05:24.630 \longrightarrow 00:05:26.470$ taking all of this information,

 $00:05:26.470 \longrightarrow 00:05:28.455$ the clinical information that

NOTE Confidence: 0.915503346920013

00:05:28.455 --> 00:05:30.440 most clinicians would use,

NOTE Confidence: 0.915503346920013

 $00:05:30.511 \longrightarrow 00:05:32.499$ the image Ng that they also use,

NOTE Confidence: 0.915503346920013

 $00:05:32.500 \longrightarrow 00:05:34.786$ but that they can't really put

NOTE Confidence: 0.915503346920013

 $00{:}05{:}34.786 \dashrightarrow 00{:}05{:}37.349$ into a model because it's hard to

NOTE Confidence: 0.915503346920013

00:05:37.349 --> 00:05:39.596 define, like I see a big tumor,

NOTE Confidence: 0.915503346920013

00:05:39.600 --> 00:05:41.730 it looks like it's encasing

NOTE Confidence: 0.915503346920013

 $00:05:41.730 \longrightarrow 00:05:42.795$ some important vessels,

NOTE Confidence: 0.915503346920013

 $00:05:42.800 \longrightarrow 00:05:45.208$ but how do I really put that into

NOTE Confidence: 0.915503346920013

00:05:45.208 --> 00:05:47.353 a model and the treatment

NOTE Confidence: 0.915503346920013

 $00{:}05{:}47.353 \dashrightarrow 00{:}05{:}50.012$ plan and can tell you kind of

NOTE Confidence: 0.915503346920013

 $00{:}05{:}50.012 \dashrightarrow 00{:}05{:}52.298$ trying to be a clinician because

NOTE Confidence: 0.915503346920013

 $00{:}05{:}52.298 \dashrightarrow 00{:}05{:}54.918$ a clinician will kind of look at

NOTE Confidence: 0.915503346920013

 $00{:}05{:}54.918 \dashrightarrow 00{:}05{:}57.829$ that and have a good shift alt of.

NOTE Confidence: 0.915503346920013

 $00:05:57.830 \longrightarrow 00:05:59.250$ This patient will do well.

 $00:05:59.250 \longrightarrow 00:06:01.238$ This patient won't do so well and

NOTE Confidence: 0.915503346920013

 $00{:}06{:}01.238 \dashrightarrow 00{:}06{:}02.980$ the computer can kind of give

NOTE Confidence: 0.915503346920013

 $00:06:02.980 \longrightarrow 00:06:04.642$ you that in a more quantitative

NOTE Confidence: 0.906355142593384

 $00:06:04.650 \longrightarrow 00:06:05.786$ way.

NOTE Confidence: 0.906355142593384

00:06:05.786 --> 00:06:07.290 Yeah, I think that you're touching

NOTE Confidence: 0.906355142593384

 $00:06:07.290 \longrightarrow 00:06:08.910$ upon one of the big advantages

NOTE Confidence: 0.906355142593384

 $00:06:08.910 \longrightarrow 00:06:10.610$ of these sorts of techniques.

NOTE Confidence: 0.906355142593384

 $00:06:10.610 \longrightarrow 00:06:12.874$ So one is that there an objective form,

NOTE Confidence: 0.906355142593384

 $00:06:12.880 \longrightarrow 00:06:14.300$ and so it's not necessarily

NOTE Confidence: 0.906355142593384

00:06:14.300 --> 00:06:15.436 utilizing one physicians experiences,

NOTE Confidence: 0.906355142593384

 $00:06:15.440 \longrightarrow 00:06:16.684$ or other physician experiences trying

NOTE Confidence: 0.906355142593384

 $00{:}06{:}16.684 \to 00{:}06{:}18.239$ to use everyone's collective experience

NOTE Confidence: 0.906355142593384

 $00:06:18.239 \longrightarrow 00:06:19.978$ of analyzing data in an objective way.

NOTE Confidence: 0.906355142593384

 $00:06:19.980 \longrightarrow 00:06:22.116$ The other thing I think you're kind of

NOTE Confidence: 0.906355142593384

00:06:22.116 --> 00:06:23.888 touching upon is this idea of we're

NOTE Confidence: 0.906355142593384

 $00{:}06{:}23.888 \dashrightarrow 00{:}06{:}25.848$ trying to mimic the same set of

 $00:06:25.848 \longrightarrow 00:06:27.648$ predictions that physicians make.

NOTE Confidence: 0.906355142593384

 $00{:}06{:}27.650 \dashrightarrow 00{:}06{:}29.372$ And that's another reason why a lot

NOTE Confidence: 0.906355142593384

 $00:06:29.372 \longrightarrow 00:06:31.168$ of people are very interested in

NOTE Confidence: 0.906355142593384

 $00:06:31.168 \longrightarrow 00:06:32.833$ machine learning is because there

NOTE Confidence: 0.906355142593384

 $00:06:32.840 \longrightarrow 00:06:34.404$ is this component of artificial

NOTE Confidence: 0.906355142593384

 $00:06:34.404 \longrightarrow 00:06:36.750$ intelligence that can be kind of

NOTE Confidence: 0.906355142593384

 $00:06:36.814 \longrightarrow 00:06:39.012$ created when you are able to look

NOTE Confidence: 0.906355142593384

 $00:06:39.012 \longrightarrow 00:06:41.315$ at data sources without

NOTE Confidence: 0.906355142593384

 $00:06:41.315 \longrightarrow 00:06:43.475$ choosing which variables to evaluate,

NOTE Confidence: 0.924597144126892 00:06:43.480 --> 00:06:45.760 and so NOTE Confidence: 0.924597144126892

 $00:06:45.760 \longrightarrow 00:06:47.926$ in this project where you

NOTE Confidence: 0.924597144126892

 $00:06:47.926 \longrightarrow 00:06:49.831$ were looking at outcomes of

NOTE Confidence: 0.924597144126892

 $00{:}06{:}49.831 \dashrightarrow 00{:}06{:}52.159$ early lung cancer and giving a

NOTE Confidence: 0.924597144126892

 $00{:}06{:}52.159 \dashrightarrow 00{:}06{:}53.740$ machine the demographic data,

NOTE Confidence: 0.924597144126892

00:06:53.740 --> 00:06:56.020 the smoking data, the imaging data,

 $00:06:56.020 \longrightarrow 00:06:57.448$ the treatment plan data,

NOTE Confidence: 0.924597144126892

 $00:06:57.448 \longrightarrow 00:07:00.393$ and you found that it was able to

NOTE Confidence: 0.924597144126892

 $00:07:00.393 \longrightarrow 00:07:02.577$ predict outcomes in terms of survival

NOTE Confidence: 0.924597144126892

 $00:07:02.577 \longrightarrow 00:07:05.090$ or in terms of recurrence.

NOTE Confidence: 0.920851290225983

 $00:07:05.090 \longrightarrow 00:07:07.367$ Yes, we found that it was able to predict

NOTE Confidence: 0.920851290225983

 $00{:}07{:}07.367 \dashrightarrow 00{:}07{:}09.000$ recurrence in various different ways,

NOTE Confidence: 0.920851290225983

 $00:07:09.000 \longrightarrow 00:07:10.524$ survival, and when we compared it

NOTE Confidence: 0.920851290225983

 $00:07:10.524 \longrightarrow 00:07:11.897$ to maybe just using traditional

NOTE Confidence: 0.920851290225983

 $00{:}07{:}11.897 \dashrightarrow 00{:}07{:}13.739$ methods or just one data stream,

NOTE Confidence: 0.920851290225983

 $00:07:13.740 \longrightarrow 00:07:15.777$ we found that it outperformed all of

NOTE Confidence: 0.920851290225983

 $00:07:15.777 \longrightarrow 00:07:17.539$ those different methods and so this

NOTE Confidence: 0.920851290225983

 $00:07:17.539 \longrightarrow 00:07:18.924$ idea of combining everything together

NOTE Confidence: 0.920851290225983

 $00:07:18.924 \longrightarrow 00:07:20.988$ is very very essential and we

NOTE Confidence: 0.920851290225983

 $00:07:20.990 \longrightarrow 00:07:22.808$ know it's very intuitive for

NOTE Confidence: 0.920851290225983

 $00:07:22.808 \longrightarrow 00:07:24.897$ clinicians to realize you have to do that,

NOTE Confidence: 0.920851290225983

 $00:07:24.900 \longrightarrow 00:07:26.574$ but I think that it's important

 $00:07:26.574 \longrightarrow 00:07:27.690$ to be able to

NOTE Confidence: 0.920851290225983

 $00:07:27.690 \longrightarrow 00:07:29.914$ do that in a mathematical way as well.

NOTE Confidence: 0.920851290225983

 $00:07:29.920 \longrightarrow 00:07:31.032$ Did it outperform the

NOTE Confidence: 0.920851290225983

 $00:07:31.032 \longrightarrow 00:07:32.422$ best guess of a clinician?

NOTE Confidence: 0.920851290225983

 $00:07:32.430 \longrightarrow 00:07:34.098$ So instead of looking at just

NOTE Confidence: 0.920851290225983

 $00:07:34.098 \longrightarrow 00:07:35.500$ traditional models, we know that

NOTE Confidence: 0.920851290225983

 $00:07:35.500 \longrightarrow 00:07:36.900$ clinicians sometimes bring their own

NOTE Confidence: 0.920851290225983

 $00:07:36.900 \longrightarrow 00:07:38.646$ experience and expertise to the equation.

NOTE Confidence: 0.920851290225983

 $00{:}07{:}38.650 \dashrightarrow 00{:}07{:}40.110$ Did you compare the machine

NOTE Confidence: 0.920851290225983

 $00{:}07{:}40.110 \dashrightarrow 00{:}07{:}41.856$ learning to clinicians best guess,

NOTE Confidence: 0.920851290225983

00:07:41.860 --> 00:07:44.196 how well patients would do or not do?

NOTE Confidence: 0.920851290225983

 $00:07:44.200 \longrightarrow 00:07:46.237$ Yeah, so one thing that we've done

NOTE Confidence: 0.915704250335693 00:07:46.240 --> 00:07:47.107 is we've NOTE Confidence: 0.915704250335693

 $00:07:47.107 \longrightarrow 00:07:48.552$ done studies that are

NOTE Confidence: 0.915704250335693

00:07:48.552 --> 00:07:50.042 looking at that, and similarly,

 $00:07:50.042 \longrightarrow 00:07:51.788$ what we've done is had multiple

NOTE Confidence: 0.915704250335693

 $00{:}07{:}51.788 {\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}} 00{:}07{:}53.249$ physicians do their best guess,

NOTE Confidence: 0.915704250335693

 $00:07:53.250 \longrightarrow 00:07:55.126$ and the first thing that's important to

NOTE Confidence: 0.915704250335693

 $00:07:55.126 \longrightarrow 00:07:57.626$ know is that physicians don't guess the same,

NOTE Confidence: 0.915704250335693

 $00:07:57.630 \longrightarrow 00:07:59.464$ and so there's actually not a gold

NOTE Confidence: 0.915704250335693

00:07:59.464 --> 00:08:01.889 standard for a way in which a physician

NOTE Confidence: 0.915704250335693

 $00:08:01.889 \longrightarrow 00:08:03.469$ would actually evaluate a patient.

NOTE Confidence: 0.915704250335693

 $00{:}08{:}03.470 \dashrightarrow 00{:}08{:}05.486$ And we found that it performed at least

NOTE Confidence: 0.915704250335693

 $00:08:05.486 \longrightarrow 00:08:07.557$ as well as an experienced clinician,

NOTE Confidence: 0.915704250335693

 $00:08:07.560 \longrightarrow 00:08:08.574$ and better than

NOTE Confidence: 0.915704250335693

 $00{:}08{:}08.574 \dashrightarrow 00{:}08{:}10.280$ may be less experienced clinicians.

 $00:08:12.050 \longrightarrow 00:08:13.820$ In a sense, NOTE Confidence: 0.925095915794373

 $00:08:13.820 \longrightarrow 00:08:15.530$ you're recreating with this machine

NOTE Confidence: 0.925095915794373

00:08:15.530 --> 00:08:17.240 learning the predictive

NOTE Confidence: 0.925095915794373

 $00{:}08{:}17.292 \dashrightarrow 00{:}08{:}19.127$ ability of an experienced clinician.

NOTE Confidence: 0.925095915794373

00:08:19.130 --> 00:08:21.608 So how is that now being utilized?

00:08:21.610 --> 00:08:24.434 Or is it being utilized in the clinic?

NOTE Confidence: 0.925095915794373

 $00:08:24.440 \longrightarrow 00:08:26.666$ I think that one of the

NOTE Confidence: 0.925095915794373

 $00:08:26.666 \longrightarrow 00:08:28.689$ benefits of the platform that

NOTE Confidence: 0.925095915794373

 $00:08:28.690 \longrightarrow 00:08:30.970$ we've developed is that it doesn't

NOTE Confidence: 0.925095915794373

 $00:08:30.970 \longrightarrow 00:08:33.524$ actually require us to pull data and

NOTE Confidence: 0.925095915794373

00:08:33.524 --> 00:08:35.764 put it into a calculator of sorts,

NOTE Confidence: 0.925095915794373

 $00:08:35.770 \longrightarrow 00:08:37.926$ which is a lot of what we

NOTE Confidence: 0.925095915794373

 $00:08:37.926 \longrightarrow 00:08:40.478$ see with a lot of predictive

NOTE Confidence: 0.925095915794373

 $00:08:40.480 \longrightarrow 00:08:41.275$ things in cancer.

NOTE Confidence: 0.925095915794373

00:08:41.275 --> 00:08:42.865 And so what we're interested in right

NOTE Confidence: 0.925095915794373

 $00{:}08{:}42.865 \mathrel{--}{>} 00{:}08{:}44.857$ now is trying to connect ours to

NOTE Confidence: 0.925095915794373

 $00:08:44.857 \longrightarrow 00:08:45.973$ the electronic medical record.

NOTE Confidence: 0.925095915794373

 $00:08:45.980 \longrightarrow 00:08:47.435$ We've developed an iPhone application

NOTE Confidence: 0.925095915794373

00:08:47.435 --> 00:08:49.656 which allows us to basically put

NOTE Confidence: 0.925095915794373

 $00:08:49.656 \longrightarrow 00:08:51.760$ in the medical record number of a patient,

NOTE Confidence: 0.925095915794373

 $00:08:51.760 \longrightarrow 00:08:54.100$ and then it allows us to pull the data

 $00:08:54.100 \longrightarrow 00:08:56.165$ natively and then it allows us to kind

NOTE Confidence: 0.925095915794373

 $00:08:56.165 \longrightarrow 00:08:58.357$ of develop that prediction in the clinic,

NOTE Confidence: 0.925095915794373

 $00:08:58.360 \longrightarrow 00:08:59.750$ and that's the next step

NOTE Confidence: 0.925095915794373

 $00:08:59.750 \longrightarrow 00:09:01.380$ of what we're trying to do.

NOTE Confidence: 0.925095915794373

 $00:09:01.380 \longrightarrow 00:09:03.193$ But I think the other thing that's

NOTE Confidence: 0.925095915794373

00:09:03.193 --> 00:09:04.317 really important whenever we're

NOTE Confidence: 0.925095915794373

 $00:09:04.317 \longrightarrow 00:09:05.827$ thinking about these machine learning

NOTE Confidence: 0.925095915794373

 $00{:}09{:}05.827 \dashrightarrow 00{:}09{:}07.574$ algorithms is because they are so

NOTE Confidence: 0.925095915794373

 $00{:}09{:}07.574 \dashrightarrow 00{:}09{:}08.804$ good at modeling healthcare data,

NOTE Confidence: 0.925095915794373

 $00:09:08.810 \longrightarrow 00:09:10.520$ they tend to actually model it

NOTE Confidence: 0.925095915794373

 $00:09:10.520 \longrightarrow 00:09:13.040$ too well, and so that's what we call overfit.

NOTE Confidence: 0.925095915794373

 $00:09:13.040 \longrightarrow 00:09:13.769$ The data set,

NOTE Confidence: 0.925095915794373

 $00{:}09{:}13.769 \longrightarrow 00{:}09{:}15.859$ and so they sort of are very good

NOTE Confidence: 0.925095915794373

00:09:15.859 --> 00:09:17.797 at modeling Yale data for example,

NOTE Confidence: 0.925095915794373

00:09:17.800 --> 00:09:19.704 but they might not be so good

00:09:19.704 --> 00:09:20.880 at modeling data from

NOTE Confidence: 0.925095915794373

00:09:20.880 --> 00:09:21.804 I don't know Chicago,

NOTE Confidence: 0.925095915794373

 $00:09:21.804 \longrightarrow 00:09:23.527$ and what we're trying to do

NOTE Confidence: 0.925095915794373

 $00:09:23.527 \longrightarrow 00:09:24.962$ also is something called external

NOTE Confidence: 0.925095915794373

 $00:09:24.962 \longrightarrow 00:09:26.787$ validation where we send our model

NOTE Confidence: 0.925095915794373

 $00:09:26.787 \longrightarrow 00:09:28.031$ to different cancer

NOTE Confidence: 0.925095915794373

00:09:28.031 --> 00:09:29.840 centers across the country and say,

 $00:09:30.120 \longrightarrow 00:09:32.360$ don't even tell us what the outcomes are,

NOTE Confidence: 0.925095915794373

 $00:09:32.360 \longrightarrow 00:09:34.320$ we will tell you what our models are predicting,

NOTE Confidence: 0.925095915794373

 $00:09:34.320 \longrightarrow 00:09:36.301$ and then you tell us how good

NOTE Confidence: 0.925095915794373

 $00:09:36.301 \longrightarrow 00:09:37.679$ our model did so far.

NOTE Confidence: 0.925095915794373

 $00:09:37.680 \longrightarrow 00:09:38.824$ Our collaboration with Jefferson

NOTE Confidence: 0.925095915794373

 $00{:}09{:}38.824 \dashrightarrow 00{:}09{:}40.254$ in Philadelphia has shown that

NOTE Confidence: 0.925095915794373

 $00{:}09{:}40.254 \dashrightarrow 00{:}09{:}41.670$ the model is very productive.

NOTE Confidence: 0.925095915794373

00:09:41.670 --> 00:09:43.038 And it's maintaining that same performance,

NOTE Confidence: 0.925095915794373

 $00:09:43.040 \longrightarrow 00:09:44.965$ but it's important to

 $00:09:44.965 \longrightarrow 00:09:46.814$ test these models before we actually

NOTE Confidence: 0.925095915794373

 $00:09:46.814 \longrightarrow 00:09:48.434$ put them into clinical practice.

NOTE Confidence: 0.912570714950562

 $00:09:48.780 \longrightarrow 00:09:51.836$ How well something can

NOTE Confidence: 0.912570714950562

 $00{:}09{:}51.836 \dashrightarrow 00{:}09{:}55.295$ predict is based on how well we learned and on

NOTE Confidence: 0.912570714950562

 $00:09:55.295 \longrightarrow 00:09:58.037$ the learning set that it had to work with.

NOTE Confidence: 0.912570714950562

00:09:58.040 --> 00:10:00.196 It makes sense, however, that the data

NOTE Confidence: 0.912570714950562

 $00:10:00.196 \longrightarrow 00:10:02.849$ that it was getting was objective data.

NOTE Confidence: 0.912570714950562

 $00:10:02.850 \longrightarrow 00:10:05.114$ It wasn't getting

NOTE Confidence: 0.912570714950562

 $00:10:05.114 \longrightarrow 00:10:07.330$ data that may have had a lot of

NOTE Confidence: 0.912570714950562

00:10:07.399 --> 00:10:09.703 factors that were subjective, right?

NOTE Confidence: 0.912570714950562

 $00{:}10{:}09.703 \dashrightarrow 00{:}10{:}11.418$ You were looking at imaging.

NOTE Confidence: 0.912570714950562

00:10:11.420 --> 00:10:14.607 Well, the image is what it is and if you give

NOTE Confidence: 0.912570714950562

 $00:10:14.607 \longrightarrow 00:10:17.247$ that image to two different radiologists,

NOTE Confidence: 0.912570714950562

 $00{:}10{:}17.250 \dashrightarrow 00{:}10{:}18.758$ they both should say

NOTE Confidence: 0.912570714950562

00:10:18.758 --> 00:10:20.266 roughly the same thing,

NOTE Confidence: 0.912570714950562

 $00:10:20.270 \longrightarrow 00:10:22.230$ maybe not exactly, but roughly,

 $00:10:22.230 \longrightarrow 00:10:25.542$ and so you'd think that the

NOTE Confidence: 0.912570714950562

00:10:25.542 --> 00:10:27.698 Jefferson images are going to be

NOTE Confidence: 0.912570714950562

00:10:27.700 --> 00:10:30.652 very much like Yale images and

NOTE Confidence: 0.912570714950562

 $00:10:30.652 \longrightarrow 00:10:33.590$ so that may account for that close

NOTE Confidence: 0.912570714950562

 $00:10:33.590 \longrightarrow 00:10:36.570$ correlation between the two datasets.

NOTE Confidence: 0.912570714950562

 $00:10:36.570 \longrightarrow 00:10:38.646$ But the next question is OK,

NOTE Confidence: 0.912570714950562

 $00:10:38.650 \longrightarrow 00:10:40.883$ let's suppose that the model after you

NOTE Confidence: 0.912570714950562

 $00:10:40.883 \longrightarrow 00:10:43.389$ test it and I don't want to

NOTE Confidence: 0.912570714950562

 $00{:}10{:}43.389 \dashrightarrow 00{:}10{:}45.404$ minimize the utility of making sure

NOTE Confidence: 0.912570714950562

 $00:10:45.404 \longrightarrow 00:10:47.300$ that it's externally generalizable.

NOTE Confidence: 0.912570714950562

 $00{:}10{:}47.300 \dashrightarrow 00{:}10{:}50.060$ Is it even being used here at Yale,

NOTE Confidence: 0.912570714950562

 $00:10:50.060 \longrightarrow 00:10:52.153$ where it was developed and

NOTE Confidence: 0.912570714950562

 $00{:}10{:}52.153 \dashrightarrow 00{:}10{:}54.680$ it does well in terms of predicting

NOTE Confidence: 0.912570714950562

 $00:10:54.680 \longrightarrow 00:10:57.680$ outcomes as well as an experienced clinician?

NOTE Confidence: 0.912570714950562

00:10:57.680 --> 00:11:00.095 Is that being used in the clinic?

 $00:11:00.100 \longrightarrow 00:11:02.522$ Are you putting in this data

NOTE Confidence: 0.912570714950562

00:11:02.522 --> 00:11:03.560 you've got now,

NOTE Confidence: 0.912570714950562

 $00:11:03.560 \longrightarrow 00:11:05.260$ this iPhone application that can

NOTE Confidence: 0.912570714950562

 $00:11:05.260 \longrightarrow 00:11:07.709$ pull in this data into this model?

NOTE Confidence: 0.912570714950562

00:11:07.710 --> 00:11:11.013 The model can do its magic and tell you,

NOTE Confidence: 0.912570714950562

 $00:11:11.020 \longrightarrow 00:11:12.938$ this is the recurrence rate.

NOTE Confidence: 0.912570714950562

 $00:11:12.940 \longrightarrow 00:11:14.310$ This is the survival rate.

NOTE Confidence: 0.912570714950562

00:11:14.310 --> 00:11:16.228 Are you using that in the clinic,

NOTE Confidence: 0.912570714950562

00:11:16.230 --> 00:11:17.326 and if so how?

00:11:18.140 --> 00:11:19.784 I think that we're in the process

NOTE Confidence: 0.93610030412674

00:11:19.784 --> 00:11:20.880 of developing the application.

NOTE Confidence: 0.93610030412674

 $00:11:20.880 \longrightarrow 00:11:22.880$ One of the big hurdles and with health

NOTE Confidence: 0.93610030412674

 $00:11:22.880 \longrightarrow 00:11:24.854$ care in general is the ability to

NOTE Confidence: 0.93610030412674

 $00{:}11{:}24.854 \dashrightarrow 00{:}11{:}26.601$ actually get access to the electronic

NOTE Confidence: 0.93610030412674

 $00{:}11{:}26.601 \dashrightarrow 00{:}11{:}28.540$ medical record in a way in which

NOTE Confidence: 0.93610030412674

00:11:28.540 --> 00:11:30.196 you can make an application kind

 $00:11:30.196 \longrightarrow 00:11:31.566$ of seamlessly integrate into it.

NOTE Confidence: 0.93610030412674

 $00{:}11{:}31.570 \dashrightarrow 00{:}11{:}32.940$ And so it's somewhat difficult

NOTE Confidence: 0.93610030412674

 $00:11:32.940 \longrightarrow 00:11:34.310$ for us to do that.

NOTE Confidence: 0.93610030412674

 $00:11:34.310 \longrightarrow 00:11:35.948$ We're working with

NOTE Confidence: 0.93610030412674

00:11:35.950 --> 00:11:37.046 a software engineering firm

NOTE Confidence: 0.93610030412674

 $00:11:37.046 \longrightarrow 00:11:38.416$ to actually help us with

NOTE Confidence: 0.93610030412674

 $00:11:38.420 \longrightarrow 00:11:40.191$ beyond the scope

NOTE Confidence: 0.93610030412674

 $00:11:40.191 \longrightarrow 00:11:42.269$ of what our lab does typically.

NOTE Confidence: 0.93610030412674

 $00:11:42.270 \longrightarrow 00:11:43.950$ And so that's where we're

NOTE Confidence: 0.93610030412674

00:11:43.950 --> 00:11:46.084 at right now with respect to actually

NOTE Confidence: 0.93610030412674

 $00:11:46.084 \longrightarrow 00:11:47.412$ integrating into clinical practice.

NOTE Confidence: 0.93610030412674

00:11:47.420 --> 00:11:49.128 I think that right now what we

NOTE Confidence: 0.93610030412674

 $00:11:49.128 \longrightarrow 00:11:51.086$ have is we have an ability to

NOTE Confidence: 0.93610030412674

 $00{:}11{:}51.086 \dashrightarrow 00{:}11{:}52.832$ kind of look back on patients,

NOTE Confidence: 0.93610030412674

00:11:52.840 --> 00:11:55.010 and if there was a patient, for example,

NOTE Confidence: 0.93610030412674

 $00:11:55.010 \longrightarrow 00:11:56.630$ who wanted to have a prediction,

 $00:11:56.630 \longrightarrow 00:11:57.990$ we could actually generate that.

NOTE Confidence: 0.93610030412674

 $00:11:57.990 \longrightarrow 00:11:59.887$ But we cannot do it in the

NOTE Confidence: 0.918058693408966

00:11:59.890 --> 00:12:00.700 electronic medical record.

NOTE Confidence: 0.918058693408966

00:12:00.700 --> 00:12:01.780 As of right now,

 $00:12:03.140 \longrightarrow 00:12:04.742$ and so when you think about

NOTE Confidence: 0.918058693408966

 $00:12:04.742 \longrightarrow 00:12:06.120$ the potential utility of this,

NOTE Confidence: 0.918058693408966

 $00:12:06.120 \longrightarrow 00:12:07.470$ where do you see it

NOTE Confidence: 0.918058693408966 00:12:07.470 --> 00:12:08.466 going? NOTE Confidence: 0.918058693408966

00:12:08.466 --> 00:12:10.725 So I think that one thing that I think

NOTE Confidence: 0.918058693408966

00:12:10.725 --> 00:12:12.765 is very important is as we're kind of

NOTE Confidence: 0.918058693408966

 $00{:}12{:}12.765 \dashrightarrow 00{:}12{:}14.340$ developing so many different genres

NOTE Confidence: 0.918058693408966

00:12:14.340 --> 00:12:15.920 of treatment for cancer patients,

NOTE Confidence: 0.918058693408966

 $00:12:15.920 \longrightarrow 00:12:17.840$ there's this increasing need for us

NOTE Confidence: 0.918058693408966

00:12:17.840 --> 00:12:19.710 to develop methods to risk stratify

NOTE Confidence: 0.918058693408966

 $00:12:19.710 \longrightarrow 00:12:21.420$ them and identify the highest risk.

NOTE Confidence: 0.918058693408966

00:12:21.420 --> 00:12:23.415 Patients who maybe would be benefiting

00:12:23.415 --> 00:12:24.780 from more aggressive treatment,

NOTE Confidence: 0.918058693408966

00:12:24.780 --> 00:12:25.698 more aggressive followup,

NOTE Confidence: 0.918058693408966

00:12:25.698 --> 00:12:26.310 and similarly,

NOTE Confidence: 0.918058693408966

00:12:26.310 --> 00:12:28.630 I think we've found with some types of

NOTE Confidence: 0.918058693408966

 $00:12:28.630 \longrightarrow 00:12:30.725$ cancers that maybe we've been a little

NOTE Confidence: 0.918058693408966

00:12:30.725 --> 00:12:32.565 bit too aggressive in our follow-up

NOTE Confidence: 0.918058693408966

 $00:12:32.565 \longrightarrow 00:12:34.515$ or too aggressive with our therapy

NOTE Confidence: 0.918058693408966

 $00:12:34.515 \longrightarrow 00:12:36.372$ and to risk stratify

NOTE Confidence: 0.918058693408966

 $00{:}12{:}36.372 \dashrightarrow 00{:}12{:}38.136$ which of those patients would be

NOTE Confidence: 0.918058693408966

 $00:12:38.136 \longrightarrow 00:12:39.858$ most useful for certain intervention

NOTE Confidence: 0.918058693408966

 $00:12:39.858 \longrightarrow 00:12:41.578$ versus another one is something

NOTE Confidence: 0.918058693408966

00:12:41.578 --> 00:12:43.322 that I think are our algorithm

NOTE Confidence: 0.918058693408966

 $00{:}12{:}43.322 \dashrightarrow 00{:}12{:}44.980$ or our platform is very useful for

NOTE Confidence: 0.918058693408966

 $00:12:44.980 \longrightarrow 00:12:46.530$ especifically for early stage

NOTE Confidence: 0.918058693408966

 $00:12:46.530 \longrightarrow 00:12:47.346$ lung cancer patients.

 $00:12:47.346 \longrightarrow 00:12:48.706$ There's currently a clinical trial

NOTE Confidence: 0.918058693408966

 $00:12:48.710 \longrightarrow 00:12:50.438$ evaluating whether or not those

NOTE Confidence: 0.918058693408966

 $00:12:50.438 \longrightarrow 00:12:52.125$ patients should get radiation and then

NOTE Confidence: 0.918058693408966

 $00:12:52.125 \longrightarrow 00:12:53.595$ additional treatment on top of that.

NOTE Confidence: 0.918058693408966

 $00:12:53.600 \longrightarrow 00:12:54.960$ Because there's this idea that

NOTE Confidence: 0.918058693408966

00:12:54.960 --> 00:12:55.776 potentially additional immunotherapy,

NOTE Confidence: 0.918058693408966

 $00:12:55.780 \longrightarrow 00:12:57.140$ for example, would be helpful

NOTE Confidence: 0.918058693408966

 $00{:}12{:}57.140 \dashrightarrow 00{:}12{:}58.500$ for those patients and a large

NOTE Confidence: 0.918058693408966

 $00:12:58.500 \longrightarrow 00:13:00.166$ amount of them may not need that

NOTE Confidence: 0.918058693408966

 $00:13:00.166 \longrightarrow 00:13:01.556$ because they are already going

NOTE Confidence: 0.918058693408966

 $00{:}13{:}01.556 \dashrightarrow 00{:}13{:}03.116$ to have great outcomes anyways,

NOTE Confidence: 0.918058693408966

 $00:13:03.120 \longrightarrow 00:13:04.752$ and a large amount of them

NOTE Confidence: 0.918058693408966

 $00:13:04.752 \longrightarrow 00:13:05.840$ maybe would need that,

NOTE Confidence: 0.918058693408966

 $00:13:05.840 \longrightarrow 00:13:07.466$ and they should get it

NOTE Confidence: 0.918058693408966 00:13:07.470 --> 00:13:08.830 maybe NOTE Confidence: 0.918058693408966

 $00:13:08.830 \longrightarrow 00:13:09.646$ right after treatment,

 $00:13:09.650 \longrightarrow 00:13:11.826$ before we even know how the outcomes are,

NOTE Confidence: 0.918058693408966

 $00:13:11.830 \longrightarrow 00:13:13.531$ and so if we can identify which

NOTE Confidence: 0.918058693408966

 $00{:}13{:}13.531 \dashrightarrow 00{:}13{:}15.218$ patients are those high risk patients

NOTE Confidence: 0.918058693408966

00:13:15.218 --> 00:13:16.733 versus those low risk patients,

NOTE Confidence: 0.918058693408966

00:13:16.740 --> 00:13:19.464 I think we could potentially tailor

NOTE Confidence: 0.918058693408966

 $00:13:19.464 \longrightarrow 00:13:21.707$ our treatments and better understand

NOTE Confidence: 0.918058693408966

 $00:13:21.707 \longrightarrow 00:13:25.080$ the way in which we can

NOTE Confidence: 0.914630115032196

 $00{:}13{:}25.080 \dashrightarrow 00{:}13{:}27.060$ personalize care based on some one's

NOTE Confidence: 0.914630115032196

 $00:13:27.060 \longrightarrow 00:13:28.644$ images and everything else.

NOTE Confidence: 0.914630115032196

00:13:28.650 --> 00:13:31.026 I get that concept of,

NOTE Confidence: 0.914630115032196

00:13:31.030 --> 00:13:32.618 you know, risk stratification,

NOTE Confidence: 0.914630115032196

 $00:13:32.618 \longrightarrow 00:13:34.206$ especially for additional therapy.

NOTE Confidence: 0.914630115032196

 $00{:}13{:}34.210 \dashrightarrow 00{:}13{:}36.190$ What would be interesting though,

NOTE Confidence: 0.914630115032196

 $00:13:36.190 \longrightarrow 00:13:38.801$ is to really look at how do

NOTE Confidence: 0.914630115032196

 $00:13:38.801 \longrightarrow 00:13:40.960$ patients do without any therapy?

 $00:13:40.960 \longrightarrow 00:13:42.940$ How do patients do with

NOTE Confidence: 0.914630115032196

 $00{:}13{:}42.940 \dashrightarrow 00{:}13{:}44.524$ therapy X versus therapy Y?

NOTE Confidence: 0.914630115032196

 $00:13:44.530 \longrightarrow 00:13:46.930$ And how can we really

NOTE Confidence: 0.914630115032196

 $00:13:46.930 \longrightarrow 00:13:47.730$ personalize therapies

NOTE Confidence: 0.914630115032196

 $00:13:47.730 \longrightarrow 00:13:50.450$ given the data that we have?

NOTE Confidence: 0.914630115032196

 $00:13:50.450 \longrightarrow 00:13:53.248$ We are going to take a short break for a medical

minute,

NOTE Confidence: 0.914630115032196

 $00:13:53.250 \longrightarrow 00:13:55.452$ but when we come back we will

NOTE Confidence: 0.914630115032196

 $00{:}13{:}55.452 \dashrightarrow 00{:}13{:}56.553$ answer those questions.

NOTE Confidence: 0.914630115032196

 $00:13:56.560 \longrightarrow 00:13:58.768$ So stay tuned to learn more

NOTE Confidence: 0.914630115032196

 $00:13:58.768 \longrightarrow 00:14:00.240$ about deep learning in

NOTE Confidence: 0.9278564453125

 $00:14:00.240 \longrightarrow 00:14:01.708$ cancer outcomes with my

NOTE Confidence: 0.9278564453125

00:14:01.708 --> 00:14:03.543 guest doctor Sanjay Aneja.

NOTE Confidence: 0.9278564453125

 $00{:}14{:}03.550 \dashrightarrow 00{:}14{:}05.390$ Support for Yale Cancer Answers

NOTE Confidence: 0.9278564453125

 $00:14:05.390 \longrightarrow 00:14:06.494$ comes from AstraZeneca,

NOTE Confidence: 0.9278564453125

 $00:14:06.500 \longrightarrow 00:14:08.375$ a biopharmaceutical business that

 $00{:}14{:}08.375 \dashrightarrow 00{:}14{:}10.777$ is pushing the boundaries of science

NOTE Confidence: 0.9278564453125

 $00:14:10.777 \longrightarrow 00:14:13.561$ to deliver new cancer medicines. More

NOTE Confidence: 0.9278564453125

 $00:14:13.561 \longrightarrow 00:14:14.953$ information at astrazeneca-us.com.

NOTE Confidence: 0.9278564453125

 $00:14:14.960 \longrightarrow 00:14:17.438$ This is a medical minute about

NOTE Confidence: 0.9278564453125

 $00:14:17.438 \longrightarrow 00:14:19.098$ pancreatic cancer, which represents

NOTE Confidence: 0.9278564453125

 $00:14:19.098 \longrightarrow 00:14:22.410$ about 3% of all cancers in the US and

NOTE Confidence: 0.9278564453125

 $00:14:22.410 \longrightarrow 00:14:24.480$ about 7% of cancer deaths.

NOTE Confidence: 0.9278564453125

 $00:14:24.480 \longrightarrow 00:14:26.655$ Clinical trials are currently being

NOTE Confidence: 0.9278564453125

 $00:14:26.655 \longrightarrow 00:14:28.395$ offered at federally designated

NOTE Confidence: 0.9278564453125

00:14:28.395 --> 00:14:29.584 comprehensive cancer centers

NOTE Confidence: 0.9278564453125

 $00{:}14{:}29.584 \dashrightarrow 00{:}14{:}31.329$ for the treatment of advanced

NOTE Confidence: 0.9278564453125

 $00:14:31.329 \longrightarrow 00:14:32.929$ stage and metastatic pancreatic

NOTE Confidence: 0.9278564453125

 $00:14:32.929 \longrightarrow 00:14:34.420$ cancer using chemotherapy

NOTE Confidence: 0.9278564453125

 $00:14:34.420 \longrightarrow 00:14:36.490$ and other novel therapies like FOLFIRINOX

NOTE Confidence: 0.9278564453125

 $00:14:36.490 \longrightarrow 00:14:38.734$ a combination of five

NOTE Confidence: 0.9278564453125

 $00:14:38.734 \longrightarrow 00:14:40.230$ different chemotherapies is the

 $00:14:40.295 \longrightarrow 00:14:42.545$ latest advances in the treatment

NOTE Confidence: 0.9278564453125

 $00:14:42.545 \longrightarrow 00:14:44.345$ of metastatic pancreatic cancer,

NOTE Confidence: 0.9278564453125

 $00:14:44.350 \longrightarrow 00:14:45.520$ and research continues

NOTE Confidence: 0.9278564453125

 $00:14:45.520 \longrightarrow 00:14:47.470$ in centers around the world

NOTE Confidence: 0.9278564453125

 $00:14:47.470 \longrightarrow 00:14:49.470$ looking into targeted the rapies.

NOTE Confidence: 0.9278564453125

 $00:14:49.470 \longrightarrow 00:14:51.550$ And a recently discovered marker

NOTE Confidence: 0.9278564453125

 $00:14:51.550 \longrightarrow 00:14:54.481$ hENT 1. This has been a medical

NOTE Confidence: 0.9278564453125

 $00{:}14{:}54.481 \dashrightarrow 00{:}14{:}57.183$ minute brought to you as a public

NOTE Confidence: 0.9278564453125

00:14:57.183 --> 00:14:59.309 service by Yale Cancer Center.

NOTE Confidence: 0.9278564453125

 $00{:}14{:}59.310 \dashrightarrow 00{:}15{:}01.860$ More information is available at

NOTE Confidence: 0.9278564453125

 $00:15:01.860 \longrightarrow 00:15:03.390$ yalecancercenter.org. You're listening

NOTE Confidence: 0.9278564453125

 $00:15:03.390 \longrightarrow 00:15:05.250$ to Connecticut public radio.

NOTE Confidence: 0.9278564453125 00:15:05.250 --> 00:15:05.610 Welcome NOTE Confidence: 0.926801145076752

00:15:05.610 --> 00:15:07.430 back to Yale Cancer Answers.

NOTE Confidence: 0.926801145076752

00:15:07.430 --> 00:15:09.670 This is doctor Anees Chagpar

 $00:15:09.670 \longrightarrow 00:15:11.815$ and I'm joined tonight by my

NOTE Confidence: 0.926801145076752

00:15:11.815 --> 00:15:14.047 guest doctor Sanjay Aneja we're

NOTE Confidence: 0.926801145076752

 $00:15:14.047 \longrightarrow 00:15:16.032$ discussing deep learning in cancer

NOTE Confidence: 0.926801145076752

 $00:15:16.032 \longrightarrow 00:15:18.342$ outcomes and right before the break,

NOTE Confidence: 0.926801145076752

 $00:15:18.350 \longrightarrow 00:15:20.264$ doctor Aneja was telling us

NOTE Confidence: 0.926801145076752

 $00:15:20.264 \longrightarrow 00:15:22.870$ about how he and his lab have

NOTE Confidence: 0.926801145076752

 $00:15:22.870 \longrightarrow 00:15:24.538$ really used machine learning.

NOTE Confidence: 0.926801145076752

 $00:15:24.540 \longrightarrow 00:15:26.220$ That is to say,

NOTE Confidence: 0.926801145076752

 $00:15:26.220 \longrightarrow 00:15:27.900$ Applied Mathematics and complicated

NOTE Confidence: 0.926801145076752

 $00:15:27.900 \longrightarrow 00:15:29.827$ computational models to really take in

NOTE Confidence: 0.926801145076752

 $00{:}15{:}29.827 \dashrightarrow 00{:}15{:}31.833$ lots and lots of data that clinicians

NOTE Confidence: 0.926801145076752

 $00:15:31.833 \longrightarrow 00:15:34.245$ using their usual clinical guess to

NOTE Confidence: 0.926801145076752

 $00:15:34.245 \longrightarrow 00:15:36.292$ predict outcomes for cancer patients.

NOTE Confidence: 0.926801145076752

00:15:36.292 --> 00:15:39.204 And Sanjay, the example that

NOTE Confidence: 0.926801145076752

 $00:15:39.204 \longrightarrow 00:15:41.779$ you gave us in early lung cancer

NOTE Confidence: 0.926801145076752

 $00:15:41.780 \longrightarrow 00:15:42.968$ where you said,

 $00:15:42.968 \longrightarrow 00:15:45.344$ the demographics

NOTE Confidence: 0.926801145076752

 $00:15:45.350 \longrightarrow 00:15:47.340$ we took the imaging data,

NOTE Confidence: 0.926801145076752

 $00:15:47.340 \longrightarrow 00:15:49.895$ but then we took the treatment plan

NOTE Confidence: 0.926801145076752

 $00:15:49.895 \longrightarrow 00:15:53.214$ and we use that and we ask the computer

NOTE Confidence: 0.926801145076752

 $00:15:53.214 \longrightarrow 00:15:56.532$ to look at these things down to the

NOTE Confidence: 0.926801145076752

 $00:15:56.532 \longrightarrow 00:15:59.244$ pixel level and then predict outcomes.

NOTE Confidence: 0.926801145076752

00:15:59.250 --> 00:16:02.122 And it was very good at predicting those

NOTE Confidence: 0.926801145076752

 $00:16:02.122 \longrightarrow 00:16:05.197$ outcomes as good as an experienced clinician,

NOTE Confidence: 0.926801145076752

 $00:16:05.200 \longrightarrow 00:16:06.940$ and that's great, but

NOTE Confidence: 0.926801145076752

 $00:16:06.940 \longrightarrow 00:16:08.906$ my question is

NOTE Confidence: 0.926801145076752

 $00:16:08.906 \longrightarrow 00:16:11.530$ what happens if you

NOTE Confidence: 0.926801145076752 00:16:11.530 --> 00:16:12.484 don't? NOTE Confidence: 0.926801145076752

 $00{:}16{:}12.484 \dashrightarrow 00{:}16{:}15.610$ How do you get rid of the treatment

NOTE Confidence: 0.926801145076752

 $00{:}16{:}15.610 \dashrightarrow 00{:}16{:}18.410$ part of that and predict outcomes

NOTE Confidence: 0.926801145076752

 $00:16:18.410 \longrightarrow 00:16:20.810$ without treatment to kind of get at

 $00:16:20.810 \longrightarrow 00:16:23.400$ the idea of, are we over treating

NOTE Confidence: 0.926801145076752

 $00:16:23.400 \longrightarrow 00:16:24.140$ some patients?

NOTE Confidence: 0.926801145076752

00:16:24.140 --> 00:16:26.737 Because if the computer doesn't have that,

NOTE Confidence: 0.926801145076752

 $00:16:26.740 \longrightarrow 00:16:28.600$ if all patients are treated,

NOTE Confidence: 0.926801145076752

00:16:28.600 --> 00:16:31.560 and that's the basis on which it learned,

NOTE Confidence: 0.926801145076752

00:16:31.560 --> 00:16:35.270 how do you take out one part of that model?

NOTE Confidence: 0.9190593957901

 $00:16:35.790 \longrightarrow 00:16:37.240$ That's a good question,

NOTE Confidence: 0.9190593957901

 $00:16:37.240 \longrightarrow 00:16:38.690$ and it's something that I

NOTE Confidence: 0.9190593957901

 $00:16:38.690 \longrightarrow 00:16:40.140$ think is not impossible.

NOTE Confidence: 0.9190593957901

 $00:16:40.140 \longrightarrow 00:16:42.404$ So I think that if we remove the

NOTE Confidence: 0.9190593957901

 $00{:}16{:}42.404 \dashrightarrow 00{:}16{:}44.487$ treatment piece of it and just look at

NOTE Confidence: 0.9190593957901

00:16:44.487 --> 00:16:46.520 the images and the demographic data,

NOTE Confidence: 0.9190593957901

 $00:16:46.520 \longrightarrow 00:16:47.692$ basically pretreatment information,

NOTE Confidence: 0.9190593957901

 $00:16:47.692 \longrightarrow 00:16:49.450$ we find the model is actually

NOTE Confidence: 0.9190593957901

 $00:16:49.500 \longrightarrow 00:16:50.580$ quite predictive as well.

NOTE Confidence: 0.9190593957901

 $00:16:50.580 \longrightarrow 00:16:52.284$ It just improves significantly if we

 $00:16:52.284 \longrightarrow 00:16:54.054$ know exactly what types of treatments

NOTE Confidence: 0.9190593957901

 $00:16:54.054 \longrightarrow 00:16:55.509$ we provided for the patients,

NOTE Confidence: 0.9190593957901

 $00:16:55.510 \longrightarrow 00:16:57.374$ and so another example of a study that

NOTE Confidence: 0.9190593957901

00:16:57.374 --> 00:16:59.191 we've done which only uses pretreatment

NOTE Confidence: 0.9190593957901

 $00:16:59.191 \longrightarrow 00:17:01.135$ imaging has been evaluating lymph nodes

NOTE Confidence: 0.9190593957901

 $00:17:01.186 \longrightarrow 00:17:02.756$ in head and neck cancer patients.

NOTE Confidence: 0.9190593957901

 $00:17:02.760 \longrightarrow 00:17:04.250$ We were attempting to look

NOTE Confidence: 0.9190593957901

 $00:17:04.250 \longrightarrow 00:17:06.040$ at which lymph nodes we saw

NOTE Confidence: 0.9190593957901

 $00{:}17{:}06.040 \dashrightarrow 00{:}17{:}08.028$ on CT imaging actually had the

NOTE Confidence: 0.9190593957901

 $00{:}17{:}08.028 \dashrightarrow 00{:}17{:}09.929$ presence of cancer and we wanted to

NOTE Confidence: 0.9190593957901

00:17:09.929 --> 00:17:11.724 identify that so that maybe you know

NOTE Confidence: 0.9190593957901

 $00:17:11.724 \longrightarrow 00:17:13.488$ what we could do is more tailor

NOTE Confidence: 0.9190593957901

 $00{:}17{:}13.490 \dashrightarrow 00{:}17{:}15.226$ the therapy for head and neck cancer

NOTE Confidence: 0.9190593957901

 $00{:}17{:}15.226 \dashrightarrow 00{:}17{:}16.679$ patients. Often times with head and neck cancer

patients

NOTE Confidence: 0.9190593957901

 $00:17:16.680 \longrightarrow 00:17:18.276$ when we think that their lymph

00:17:18.276 --> 00:17:19.340 nodes don't have cancer,

NOTE Confidence: 0.9190593957901

 $00:17:19.340 \longrightarrow 00:17:20.650$ we have them undergo surgery

NOTE Confidence: 0.9190593957901

 $00:17:20.650 \longrightarrow 00:17:22.270$ and then we find

NOTE Confidence: 0.9190593957901

 $00:17:22.270 \longrightarrow 00:17:23.600$ those lymph nodes have cancer.

NOTE Confidence: 0.9190593957901

 $00:17:23.600 \longrightarrow 00:17:24.925$ They have to get radiation

NOTE Confidence: 0.9190593957901

 $00:17:24.925 \longrightarrow 00:17:25.720$ and chemotherapy altogether.

NOTE Confidence: 0.9190593957901

 $00:17:25.720 \longrightarrow 00:17:27.640$ And so if we were able to identify

NOTE Confidence: 0.9190593957901

 $00:17:27.640 \longrightarrow 00:17:29.175$ the patients ahead of time that

NOTE Confidence: 0.9190593957901

 $00{:}17{:}29.175 \dashrightarrow 00{:}17{:}31.029$ have cancer in the lymph nodes than

NOTE Confidence: 0.9190593957901

 $00{:}17{:}31.029 \dashrightarrow 00{:}17{:}32.805$ what they would have instead is

NOTE Confidence: 0.9190593957901

 $00:17:32.805 \longrightarrow 00:17:33.972$ just chemotherapy and radiation.

NOTE Confidence: 0.9190593957901

 $00:17:33.972 \longrightarrow 00:17:35.604$ They save themselves some surgery and

NOTE Confidence: 0.9190593957901

 $00:17:35.604 \longrightarrow 00:17:37.524$ so that's an example of when we've

NOTE Confidence: 0.9190593957901

 $00:17:37.524 \longrightarrow 00:17:39.102$ used pretreatment imaging to sort of

NOTE Confidence: 0.9190593957901

 $00:17:39.110 \longrightarrow 00:17:41.360$ reduce potential extra care or care

 $00:17:41.360 \longrightarrow 00:17:44.000$ that maybe would not be necessary

NOTE Confidence: 0.9190593957901

 $00:17:44.000 \longrightarrow 00:17:46.136$ or could have been avoided.

NOTE Confidence: 0.918318212032318

00:17:46.140 --> 00:17:48.908 Do we have datasets with patients who

NOTE Confidence: 0.918318212032318

 $00:17:48.908 \longrightarrow 00:17:51.591$ were treated in different ways so that

NOTE Confidence: 0.918318212032318

 $00:17:51.591 \longrightarrow 00:17:53.910$ we can predict given pretreatment data,

NOTE Confidence: 0.918318212032318

 $00:17:53.910 \longrightarrow 00:17:55.760$ if you got treatment a,

NOTE Confidence: 0.918318212032318

 $00:17:55.760 \longrightarrow 00:17:57.610$ you will do this well,

NOTE Confidence: 0.918318212032318

 $00:17:57.610 \longrightarrow 00:17:59.042$ if you got treatment b

NOTE Confidence: 0.918318212032318

 $00:17:59.042 \longrightarrow 00:18:02.392$ you will do that well and if you got

NOTE Confidence: 0.918318212032318

 $00:18:02.392 \longrightarrow 00:18:05.010$ treatment c you will do this well.

NOTE Confidence: 0.918318212032318

 $00{:}18{:}05.010 \dashrightarrow 00{:}18{:}08.066$ And if you got no treatment you would

NOTE Confidence: 0.918318212032318

 $00:18:08.066 \longrightarrow 00:18:11.300$ do just as well as any of the above.

NOTE Confidence: 0.904884934425354

00:18:11.620 --> 00:18:13.216 Yeah, so that actually kind of

NOTE Confidence: 0.904884934425354

 $00:18:13.216 \longrightarrow 00:18:14.624$ touches upon something that we're

NOTE Confidence: 0.904884934425354

00:18:14.624 --> 00:18:16.079 really actively exploring and NOTE Confidence:

0.904884934425354

 $00:18:16.080 \longrightarrow 00:18:17.760$ something that we're very excited about.

 $00:18:17.760 \longrightarrow 00:18:19.428$ So one thing that

NOTE Confidence: 0.904884934425354

 $00:18:19.430 \longrightarrow 00:18:21.110$ we've kind of indicated,

NOTE Confidence: 0.904884934425354

 $00:18:21.110 \longrightarrow 00:18:22.222$ is that these machine

NOTE Confidence: 0.904884934425354

 $00:18:22.222 \longrightarrow 00:18:23.334$ learning algorithms, these deep

NOTE Confidence: 0.904884934425354

 $00:18:23.340 \longrightarrow 00:18:24.452$ learning algorithms are extremely

NOTE Confidence: 0.904884934425354

00:18:24.452 --> 00:18:25.564 good at analyzing pictures,

NOTE Confidence: 0.904884934425354

 $00:18:25.570 \longrightarrow 00:18:27.937$ and so one thing that we've looked at is

NOTE Confidence: 0.904884934425354

 $00{:}18{:}27.937 \dashrightarrow 00{:}18{:}30.306$ this idea of what we call digital Twins.

NOTE Confidence: 0.904884934425354

 $00:18:30.310 \longrightarrow 00:18:31.990$ So, based on your pretreatment imaging,

NOTE Confidence: 0.904884934425354

 $00:18:31.990 \longrightarrow 00:18:33.106$ nothing else no demographics,

NOTE Confidence: 0.904884934425354

00:18:33.106 --> 00:18:34.780 just what your tumor looks like,

NOTE Confidence: 0.904884934425354

 $00:18:34.780 \longrightarrow 00:18:36.551$ if we could find your digital twin

NOTE Confidence: 0.904884934425354

 $00:18:36.551 \longrightarrow 00:18:38.277$ or someone who's tumor looks exactly

NOTE Confidence: 0.904884934425354

00:18:38.277 --> 00:18:39.797 like yours or digital family,

NOTE Confidence: 0.904884934425354

 $00:18:39.800 \longrightarrow 00:18:41.690$ which is maybe a group of five

 $00:18:41.690 \longrightarrow 00:18:43.150$ people that are like that,

NOTE Confidence: 0.904884934425354

 $00:18:43.150 \longrightarrow 00:18:45.446$ we can use deep learning to do that.

NOTE Confidence: 0.904884934425354

 $00:18:45.450 \longrightarrow 00:18:47.700$ And then what we can do is we can

NOTE Confidence: 0.904884934425354

00:18:47.700 --> 00:18:49.908 see, OK among your digital twins,

NOTE Confidence: 0.904884934425354

00:18:49.910 --> 00:18:51.225 or your digital family

NOTE Confidence: 0.904884934425354

 $00:18:51.225 \longrightarrow 00:18:53.170$ who got one type of treatment,

NOTE Confidence: 0.904884934425354

 $00:18:53.170 \longrightarrow 00:18:54.844$ this is what their outcome was

NOTE Confidence: 0.904884934425354

00:18:54.844 --> 00:18:56.645 and among your digital family who

NOTE Confidence: 0.904884934425354

 $00{:}18{:}56.645 {\:\dashrightarrow\:} 00{:}18{:}58.215$ got another type of treatment,

NOTE Confidence: 0.904884934425354

 $00:18:58.220 \longrightarrow 00:18:59.996$ this is what their outcome was.

NOTE Confidence: 0.904884934425354

 $00:19:00.000 \longrightarrow 00:19:00.888$ And then they

NOTE Confidence: 0.920491576194763

 $00:19:00.890 \longrightarrow 00:19:02.997$ can make a more informed decision about

NOTE Confidence: 0.920491576194763

 $00:19:02.997 \longrightarrow 00:19:05.047$ what they would actually want to do.

NOTE Confidence: 0.920491576194763

 $00:19:05.050 \longrightarrow 00:19:07.003$ We talk a lot on this

NOTE Confidence: 0.920491576194763

00:19:07.003 --> 00:19:08.689 show about tumor heterogeneity and

NOTE Confidence: 0.920491576194763

 $00:19:08.689 \longrightarrow 00:19:10.807$ different kinds of cancer and tumor

00:19:10.863 --> 00:19:13.026 biology and all kinds of other things

NOTE Confidence: 0.920491576194763

 $00:19:13.026 \longrightarrow 00:19:15.472$ that

NOTE Confidence: 0.920491576194763

 $00:19:15.472 \longrightarrow 00:19:17.362$ seemed to really affect

NOTE Confidence: 0.920491576194763

00:19:17.370 --> 00:19:19.140 biology, they seem to affect outcomes,

NOTE Confidence: 0.920491576194763

 $00:19:19.140 \longrightarrow 00:19:21.228$ so how is it that you can use that

NOTE Confidence: 0.920491576194763

00:19:21.228 --> 00:19:23.279 data without knowing all of the

NOTE Confidence: 0.920491576194763

 $00:19:23.279 \longrightarrow 00:19:25.034$ other things?

NOTE Confidence: 0.91830712556839

 $00:19:25.040 \longrightarrow 00:19:27.616$ I think for one, there's a lot of

NOTE Confidence: 0.91830712556839

 $00{:}19{:}27.616 \dashrightarrow 00{:}19{:}29.260$ evidence to suggest that deep learning

NOTE Confidence: 0.91830712556839

 $00:19:29.316 \longrightarrow 00:19:30.786$ algorithms can actually predict changes

NOTE Confidence: 0.91830712556839

00:19:30.786 --> 00:19:33.009 in tumors up to the genomic level,

NOTE Confidence: 0.91830712556839

 $00:19:33.010 \longrightarrow 00:19:34.837$ so genetic mutations and tumor is based

NOTE Confidence: 0.91830712556839

 $00:19:34.837 \longrightarrow 00:19:37.426$ off of the pictures because we have to

NOTE Confidence: 0.91830712556839

 $00{:}19{:}37.426 \to 00{:}19{:}39.176$ appreciate that their really evaluating

NOTE Confidence: 0.91830712556839

 $00:19:39.230 \longrightarrow 00:19:41.181$ every tumor at a very, very small level,

 $00:19:41.181 \longrightarrow 00:19:43.050$ every little pixel and each pixel has

NOTE Confidence: 0.91830712556839

 $00{:}19{:}43.106 \dashrightarrow 00{:}19{:}44.806$ a variety of different intensities,

NOTE Confidence: 0.91830712556839

 $00:19:44.810 \longrightarrow 00:19:46.240$ and so they're really looking

NOTE Confidence: 0.91830712556839

 $00:19:46.240 \longrightarrow 00:19:48.490$ at the data in a close level.

NOTE Confidence: 0.91830712556839

00:19:48.490 --> 00:19:51.790 So in lung cancer as well as in brain tumors,

NOTE Confidence: 0.91830712556839

 $00:19:51.790 \longrightarrow 00:19:53.566$ an also in some lymphomas there's

NOTE Confidence: 0.91830712556839

 $00:19:53.566 \longrightarrow 00:19:55.480$ been evidence to suggest that deep

NOTE Confidence: 0.91830712556839

 $00:19:55.480 \longrightarrow 00:19:57.165$ learning algorithms on the diagnostic

NOTE Confidence: 0.91830712556839

 $00{:}19{:}57.165 {\:{\circ}{\circ}{\circ}}>00{:}19{:}59.050$ images can predict genomic changes.

NOTE Confidence: 0.91830712556839

 $00:19:59.050 \longrightarrow 00:20:00.700$ So like driver gene mutations

 $00{:}20{:}02.350 \to 00{:}20{:}04.606$ that would actually maybe presumably need

NOTE Confidence: 0.91830712556839

 $00:20:04.606 \longrightarrow 00:20:06.743$ sequencing information for and so then

NOTE Confidence: 0.91830712556839

 $00:20:06.743 \longrightarrow 00:20:08.465$ that suggests that the pictures actually

NOTE Confidence: 0.91830712556839

 $00{:}20{:}08.465 \dashrightarrow 00{:}20{:}10.929$ have a lot more information than we think,

NOTE Confidence: 0.91830712556839

 $00:20:10.930 \longrightarrow 00:20:13.594$ but I do think that you're kind of right

NOTE Confidence: 0.91830712556839

00:20:13.594 --> 00:20:16.716 in one way that maybe it's not just the

 $00:20:16.716 \longrightarrow 00:20:18.930$ pictures that tell the whole story.

NOTE Confidence: 0.91830712556839

 $00:20:18.930 \longrightarrow 00:20:21.132$ But the idea is that people

NOTE Confidence: 0.91830712556839

 $00:20:21.132 \longrightarrow 00:20:22.600$ whose tumors look similar,

NOTE Confidence: 0.91830712556839

 $00:20:22.600 \longrightarrow 00:20:24.796$ they likely have similar genomic backgrounds.

NOTE Confidence: 0.923692107200623

 $00:20:24.800 \longrightarrow 00:20:27.208$ I'm still puzzled by

NOTE Confidence: 0.923692107200623

 $00:20:27.208 \longrightarrow 00:20:29.470$ this whole concept because

NOTE Confidence: 0.923692107200623

00:20:29.470 --> 00:20:32.880 we think about a CT scan or a mammogram,

NOTE Confidence: 0.923692107200623

 $00:20:32.880 \longrightarrow 00:20:35.113$ or an MRI and each of these

NOTE Confidence: 0.923692107200623

00:20:35.113 --> 00:20:36.910 has its own pitfalls.

NOTE Confidence: 0.923692107200623

 $00:20:36.910 \longrightarrow 00:20:39.479$ There are false positives on these images,

NOTE Confidence: 0.923692107200623

 $00{:}20{:}39.480 \dashrightarrow 00{:}20{:}42.049$ there are false negatives on these images,

NOTE Confidence: 0.923692107200623

 $00:20:42.050 \longrightarrow 00:20:45.390$ so it kind of makes me a little wary to

NOTE Confidence: 0.923692107200623

 $00:20:45.484 \longrightarrow 00:20:48.660$ put so much faith just in the images.

NOTE Confidence: 0.923692107200623

 $00:20:48.660 \longrightarrow 00:20:50.128$ How do you explain

NOTE Confidence: 0.92742533882459 00:20:50.130 --> 00:20:51.846 that? NOTE Confidence: 0.92742533882459

 $00:20:51.846 \longrightarrow 00:20:54.218$ I guess one of the limitations or one

 $00:20:54.218 \longrightarrow 00:20:56.650$ of the important caveats to any sort of

NOTE Confidence: 0.92742533882459

 $00:20:56.650 \longrightarrow 00:20:58.528$ machine learning project is that your

NOTE Confidence: 0.92742533882459

00:20:58.528 --> 00:21:00.948 outcomes are only as good as your data,

NOTE Confidence: 0.92742533882459

 $00:21:00.950 \longrightarrow 00:21:03.254$ and so if we have a lot of false

NOTE Confidence: 0.92742533882459

 $00:21:03.254 \longrightarrow 00:21:05.547$ positives in our data set that we have

NOTE Confidence: 0.92742533882459

00:21:05.547 --> 00:21:07.798 not addressed and we haven't identified,

NOTE Confidence: 0.92742533882459

 $00:21:07.800 \longrightarrow 00:21:09.746$ then I think that it's really important

NOTE Confidence: 0.92742533882459

 $00:21:09.746 \longrightarrow 00:21:11.884$ that we understand that the machine learning

NOTE Confidence: 0.92742533882459

 $00:21:11.884 \longrightarrow 00:21:13.756$ algorithm will learn those same errors.

NOTE Confidence: 0.92742533882459

00:21:13.760 --> 00:21:16.442 So similarly any sort of biases that we have,

NOTE Confidence: 0.92742533882459

 $00:21:16.450 \longrightarrow 00:21:18.536$ maybe we have a bias towards over

NOTE Confidence: 0.92742533882459

 $00:21:18.536 \longrightarrow 00:21:20.670$ imaging or over

NOTE Confidence: 0.92742533882459

 $00{:}21{:}20.670 \dashrightarrow 00{:}21{:}22.150$ diagnosing something on an image,

NOTE Confidence: 0.92742533882459

 $00{:}21{:}22.150 \longrightarrow 00{:}21{:}23.980$ those similar biases will be promulgated

NOTE Confidence: 0.92742533882459

 $00:21:23.980 \longrightarrow 00:21:25.740$ through our machine learning algorithms.

00:21:25.740 --> 00:21:27.624 It's actually somewhat of an interesting

NOTE Confidence: 0.92742533882459

 $00:21:27.624 \longrightarrow 00:21:29.970$ topic in the context of machine learning

NOTE Confidence: 0.92742533882459

 $00:21:29.970 \longrightarrow 00:21:31.428$ outside of healthcare is that we

NOTE Confidence: 0.92742533882459

00:21:31.428 --> 00:21:33.380 find that a lot of machine learning

NOTE Confidence: 0.92742533882459

 $00:21:33.380 \longrightarrow 00:21:35.543$ algorithms they mimic the same biases and

NOTE Confidence: 0.92742533882459

00:21:35.595 --> 00:21:36.840 discriminatory abilities

NOTE Confidence: 0.92742533882459

 $00:21:36.840 \longrightarrow 00:21:39.745$ that people have in regular practice,

NOTE Confidence: 0.92742533882459

 $00:21:39.750 \longrightarrow 00:21:41.878$ and so a lot of algorithms that

NOTE Confidence: 0.92742533882459

 $00{:}21{:}41.878 {\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}} 00{:}21{:}43.989$ have been used in law enforcement,

NOTE Confidence: 0.92742533882459

 $00:21:43.990 \longrightarrow 00:21:46.132$ we find that are actually maybe

NOTE Confidence: 0.92742533882459

 $00{:}21{:}46.132 \dashrightarrow 00{:}21{:}48.185$ promulgating some of the parts

NOTE Confidence: 0.92742533882459

 $00:21:48.185 \longrightarrow 00:21:49.859$ of our law enforcement

NOTE Confidence: 0.911179857594626

 $00:21:49.860 \longrightarrow 00:21:52.366$ that we don't want.

NOTE Confidence: 0.911179857594626

 $00{:}21{:}52.370 \dashrightarrow 00{:}21{:}55.274$ One way to kind of get around that

NOTE Confidence: 0.911179857594626

 $00:21:55.274 \longrightarrow 00:21:58.226$ one would think is to use more data,

NOTE Confidence: 0.911179857594626

 $00:21:58.230 \longrightarrow 00:21:59.634$ not just the images,

00:21:59.634 --> 00:22:02.260 but get down to the genomic level,

NOTE Confidence: 0.911179857594626

 $00:22:02.260 \longrightarrow 00:22:04.885$ do the biopsy. We've got biopsies on

NOTE Confidence: 0.911179857594626

 $00:22:04.885 \longrightarrow 00:22:07.379$ most tumors before we ever treat them,

NOTE Confidence: 0.911179857594626

 $00:22:07.380 \longrightarrow 00:22:09.576$ so look at the pathologic information,

NOTE Confidence: 0.911179857594626

 $00{:}22{:}09.580 \dashrightarrow 00{:}22{:}11.410$ look at the genomic information.

NOTE Confidence: 0.911179857594626

 $00:22:11.410 \longrightarrow 00:22:13.930$ We can get a lot of

NOTE Confidence: 0.911179857594626

 $00:22:13.930 \longrightarrow 00:22:15.610$ sequencing data these days.

NOTE Confidence: 0.911179857594626

00:22:15.610 --> 00:22:16.914 And speaking of which,

NOTE Confidence: 0.911179857594626

 $00:22:16.914 \longrightarrow 00:22:19.244$ it's really hard to understand what all

NOTE Confidence: 0.911179857594626

 $00{:}22{:}19.244 \dashrightarrow 00{:}22{:}21.134$ of these different mutations are when

NOTE Confidence: 0.911179857594626

 $00:22:21.134 \longrightarrow 00:22:23.429$ we think about whole exome sequencing.

NOTE Confidence: 0.911179857594626

 $00:22:23.430 \longrightarrow 00:22:25.632$ I mean, I would think that

NOTE Confidence: 0.911179857594626

 $00{:}22{:}25.632 \dashrightarrow 00{:}22{:}27.100$ machine learning might have

NOTE Confidence: 0.911179857594626

 $00:22:27.170 \longrightarrow 00:22:28.868$ a role to play there too.

00:22:29.210 --> 00:22:31.280 Certainly, I think that machine learning

NOTE Confidence: 0.939351677894592

 $00:22:31.280 \longrightarrow 00:22:34.033$ in general is probably one of the more

 $00:22:34.033 \longrightarrow 00:22:36.001$ common approaches to evaluate genomic data.

NOTE Confidence: 0.939351677894592

 $00:22:36.010 \longrightarrow 00:22:38.138$ Now, because the genome is so complex

NOTE Confidence: 0.939351677894592

 $00:22:38.138 \longrightarrow 00:22:41.022$ and it's so difficult for us to kind of

NOTE Confidence: 0.939351677894592

00:22:41.022 --> 00:22:43.509 understand that the machine learning

NOTE Confidence: 0.939351677894592

 $00:22:43.509 \longrightarrow 00:22:45.819$ algorithms are maybe the most common

NOTE Confidence: 0.939351677894592

 $00:22:45.819 \longrightarrow 00:22:48.758$ ways in which we analyze that sort of

NOTE Confidence: 0.939351677894592

 $00:22:48.760 \longrightarrow 00:22:50.330$ information now,

NOTE Confidence: 0.939351677894592

 $00:22:50.330 \longrightarrow 00:22:52.196$ specifically with respect to deep learning,

NOTE Confidence: 0.939351677894592

00:22:52.200 --> 00:22:54.704 which is what our lab is,

NOTE Confidence: 0.939351677894592

00:22:54.710 --> 00:22:55.958 particularly just specific types

NOTE Confidence: 0.939351677894592

 $00:22:55.958 \longrightarrow 00:22:57.206$ of machine learning methods.

NOTE Confidence: 0.939351677894592

 $00:22:57.210 \longrightarrow 00:22:58.775$ It's somewhat difficult to evaluate

NOTE Confidence: 0.939351677894592

 $00{:}22{:}58.775 \dashrightarrow 00{:}23{:}00.340$ genomic information with that data,

NOTE Confidence: 0.939351677894592

 $00:23:00.340 \longrightarrow 00:23:02.419$ and the reason

NOTE Confidence: 0.939351677894592 00:23:02.419 --> 00:23:04.704 for that is NOTE Confidence: 0.939351677894592 00:23:04.704 --> 00:23:06.684 because we don't actually have a

NOTE Confidence: 0.939351677894592

 $00:23:06.751 \longrightarrow 00:23:09.127$ huge data set right now at our

NOTE Confidence: 0.939351677894592

00:23:09.127 --> 00:23:10.600 disposal of genomic information,

NOTE Confidence: 0.939351677894592

 $00:23:10.600 \longrightarrow 00:23:13.087$ because in order to do some of these

NOTE Confidence: 0.939351677894592

00:23:13.087 --> 00:23:15.368 analysis, we need upwards of 1000 patients,

NOTE Confidence: 0.939351677894592

 $00:23:15.370 \longrightarrow 00:23:17.561$ and so it's difficult to get 1000

NOTE Confidence: 0.939351677894592

00:23:17.561 --> 00:23:19.300 patients with tumors, images, and

NOTE Confidence: 0.939351677894592

 $00:23:19.300 \longrightarrow 00:23:21.300$ whole exome sequencing,

NOTE Confidence: 0.939351677894592

 $00:23:21.300 \longrightarrow 00:23:22.473$ but it's possible,

NOTE Confidence: 0.939351677894592 00:23:22.473 --> 00:23:23.646 and I would

NOTE Confidence: 0.939351677894592

 $00:23:23.650 \longrightarrow 00:23:25.954$ venture that a place

NOTE Confidence: 0.939351677894592

 $00:23:25.954 \longrightarrow 00:23:27.980$ like Yale is the place

NOTE Confidence: 0.925964832305908

 $00:23:27.980 \longrightarrow 00:23:30.995$ that would have that ability to do that or

NOTE Confidence: 0.925964832305908

00:23:30.995 --> 00:23:34.262 or some of these cooperative groups, right?

NOTE Confidence: 0.925964832305908

 $00:23:34.262 \longrightarrow 00:23:36.614$ For our listeners,

NOTE Confidence: 0.925964832305908

 $00:23:36.620 \longrightarrow 00:23:38.978$ there are clinical trials that happen

00:23:38.978 --> 00:23:41.336 all across the country, sometimes all

NOTE Confidence: 0.925964832305908

 $00:23:41.336 \longrightarrow 00:23:43.694$ across the world with cooperative groups.

NOTE Confidence: 0.925964832305908

 $00:23:43.700 \longrightarrow 00:23:45.284$ These groups of clinicians,

NOTE Confidence: 0.925964832305908

00:23:45.284 --> 00:23:47.660 physicians who are all putting their

NOTE Confidence: 0.925964832305908

 $00:23:47.725 \longrightarrow 00:23:50.448$ patients on exactly the same clinical trial

NOTE Confidence: 0.925964832305908

 $00:23:50.450 \longrightarrow 00:23:52.040$ and taking their data,

NOTE Confidence: 0.925964832305908

00:23:52.040 --> 00:23:53.930 putting it in a central repository

NOTE Confidence: 0.925964832305908

 $00{:}23{:}53.930 \dashrightarrow 00{:}23{:}56.168$ where all of that can be studied.

NOTE Confidence: 0.925964832305908

00:23:56.170 --> 00:23:58.242 Sanjay, I would think that

NOTE Confidence: 0.925964832305908

 $00:23:58.242 \longrightarrow 00:24:00.539$ would be an ideal place for you

NOTE Confidence: 0.925964832305908

 $00:24:00.539 \longrightarrow 00:24:02.850$ to get that data.

NOTE Confidence: 0.913027107715607

 $00:24:02.850 \longrightarrow 00:24:04.873$ Yes, and one effort of our research

NOTE Confidence: 0.913027107715607

 $00{:}24{:}04.873 \dashrightarrow 00{:}24{:}06.854$ group is actually sort of engaging

NOTE Confidence: 0.913027107715607

 $00{:}24{:}06.854 \to 00{:}24{:}08.258$ with the cooperative groups.

NOTE Confidence: 0.913027107715607

 $00:24:08.260 \longrightarrow 00:24:10.084$ There's two that we've

00:24:10.084 --> 00:24:11.760 begun engaging with, the NRG

NOTE Confidence: 0.913027107715607

 $00{:}24{:}11.760 \longrightarrow 00{:}24{:}13.824$ which is a large group that has a

NOTE Confidence: 0.913027107715607

 $00:24:13.824 \longrightarrow 00:24:16.652$ lot of radiation data as well as the

NOTE Confidence: 0.913027107715607

00:24:16.652 --> 00:24:18.839 Southwest Oncology Group also

NOTE Confidence: 0.913027107715607

 $00:24:18.839 \longrightarrow 00:24:21.319$ known as SWOG in order to sort of develop

NOTE Confidence: 0.913027107715607

 $00{:}24{:}21.320 \dashrightarrow 00{:}24{:}22.568$ an infrastructure within the

NOTE Confidence: 0.913027107715607

 $00:24:22.568 \longrightarrow 00:24:23.816$ organization to evaluate machine

NOTE Confidence: 0.913027107715607

 $00{:}24{:}23.816 \dashrightarrow 00{:}24{:}25.110$ learning techniques and utilized

NOTE Confidence: 0.913027107715607

00:24:25.110 --> 00:24:26.046 machine learning techniques.

NOTE Confidence: 0.913027107715607

 $00:24:26.050 \longrightarrow 00:24:27.842$ Because a lot of what

NOTE Confidence: 0.913027107715607

 $00:24:27.842 \longrightarrow 00:24:29.016$ we've designed, these clinical

NOTE Confidence: 0.913027107715607

00:24:29.016 --> 00:24:31.134 trials and these repositories is that

NOTE Confidence: 0.913027107715607

 $00:24:31.134 \longrightarrow 00:24:32.660$ these cooperative groups,

NOTE Confidence: 0.913027107715607

 $00:24:32.660 \longrightarrow 00:24:34.385$ their infrastructure wasn't made for

NOTE Confidence: 0.913027107715607

 $00:24:34.385 \longrightarrow 00:24:36.494$ these sorts of analysis because they

NOTE Confidence: 0.913027107715607

 $00:24:36.494 \longrightarrow 00:24:37.814$ weren't necessarily thinking that

 $00:24:37.814 \longrightarrow 00:24:40.021$ this is something that was going to

NOTE Confidence: 0.913027107715607

 $00:24:40.021 \longrightarrow 00:24:41.792$ come on the horizon.

NOTE Confidence: 0.913027107715607

00:24:41.800 --> 00:24:43.746 And so one thing that we're working

NOTE Confidence: 0.913027107715607

00:24:43.746 --> 00:24:46.061 right now is with SWOG and NRG

NOTE Confidence: 0.913027107715607

 $00:24:46.061 \longrightarrow 00:24:48.410$ to develop that sort of infrastructure.

NOTE Confidence: 0.913027107715607

 $00:24:48.410 \longrightarrow 00:24:50.492$ The first process of that is

NOTE Confidence: 0.913027107715607

 $00:24:50.492 \longrightarrow 00:24:52.224$ developing something that allows us

NOTE Confidence: 0.913027107715607

 $00:24:52.224 \longrightarrow 00:24:54.170$ to get the imaging data very easily.

NOTE Confidence: 0.913027107715607

00:24:54.170 --> 00:24:56.514 Images are sort of an easy

NOTE Confidence: 0.913027107715607

 $00{:}24{:}56.514 \dashrightarrow 00{:}24{:}58.616$ method for us to evaluate machine

NOTE Confidence: 0.913027107715607

00:24:58.616 --> 00:25:00.788 learning methods because one,

NOTE Confidence: 0.913027107715607

 $00:25:00.790 \longrightarrow 00:25:02.918$ it's been shown to be the most effective

NOTE Confidence: 0.913027107715607

 $00{:}25{:}02.918 \dashrightarrow 00{:}25{:}05.418$ in image analysis across various industries,

NOTE Confidence: 0.913027107715607

00:25:05.420 --> 00:25:06.076 healthcare, technology,

NOTE Confidence: 0.913027107715607

 $00{:}25{:}06.076 \dashrightarrow 00{:}25{:}06.404$ etc.

 $00:25:06.404 \longrightarrow 00:25:08.372$ and secondly imaging in healthcare

NOTE Confidence: 0.913027107715607

 $00:25:08.372 \longrightarrow 00:25:10.059$ has a standardized data format.

NOTE Confidence: 0.913027107715607

 $00:25:10.060 \longrightarrow 00:25:11.710$ It's a common data model,

NOTE Confidence: 0.913027107715607

 $00{:}25{:}11.710 \dashrightarrow 00{:}25{:}14.027$ so there's no difficulty about well,

NOTE Confidence: 0.913027107715607

 $00:25:14.030 \longrightarrow 00:25:16.016$ so and so in California stores

NOTE Confidence: 0.913027107715607

 $00:25:16.016 \longrightarrow 00:25:17.340$ their data one way,

NOTE Confidence: 0.913027107715607

 $00:25:17.340 \longrightarrow 00:25:20.319$ and then we store it a different way, etc.

NOTE Confidence: 0.917157232761383

00:25:20.320 --> 00:25:22.637 One thing that you mentioned,

NOTE Confidence: 0.917157232761383

 $00{:}25{:}22.640 \dashrightarrow 00{:}25{:}25.631$ which I still have to go back to, is

NOTE Confidence: 0.917157232761383

00:25:25.631 --> 00:25:27.035 you said that you're

NOTE Confidence: 0.917157232761383

00:25:27.035 --> 00:25:28.439 interested in deep learning,

NOTE Confidence: 0.917157232761383

 $00{:}25{:}28.440 \dashrightarrow 00{:}25{:}31.272$ which is a type of machine learning that

NOTE Confidence: 0.917157232761383

 $00:25:31.272 \longrightarrow 00:25:33.570$ is particularly well suited to imaging.

NOTE Confidence: 0.917157232761383

 $00:25:33.570 \longrightarrow 00:25:35.280$ Tell us the difference between

NOTE Confidence: 0.917157232761383

00:25:35.280 --> 00:25:36.990 deep learning and machine learning.

NOTE Confidence: 0.917157232761383

 $00:25:36.990 \longrightarrow 00:25:38.010$ Yeah, that's a

00:25:38.010 --> 00:25:39.720 good question,

NOTE Confidence: 0.930824279785156

 $00:25:39.720 \longrightarrow 00:25:41.430$ and the words,

NOTE Confidence: 0.930824279785156

 $00:25:41.430 \longrightarrow 00:25:42.114$ artificial intelligence,

NOTE Confidence: 0.930824279785156

00:25:42.114 --> 00:25:42.798 machine learning,

NOTE Confidence: 0.930824279785156

 $00:25:42.798 \longrightarrow 00:25:43.824$ and deep learning.

NOTE Confidence: 0.930824279785156

00:25:43.830 --> 00:25:45.876 sort of get thrown around together,

NOTE Confidence: 0.930824279785156

 $00:25:45.880 \longrightarrow 00:25:48.267$ and it's difficult to parse them out.

NOTE Confidence: 0.930824279785156

 $00:25:48.270 \longrightarrow 00:25:49.638$ I think that machine

NOTE Confidence: 0.930824279785156

 $00:25:49.638 \longrightarrow 00:25:51.006$ learning is a broad

NOTE Confidence: 0.930824279785156

 $00:25:51.010 \longrightarrow 00:25:52.720$ discipline of various types of

NOTE Confidence: 0.930824279785156

 $00:25:52.720 \longrightarrow 00:25:54.430$ mathematical techniques to model data.

NOTE Confidence: 0.930824279785156

00:25:54.430 --> 00:25:56.190 Deep learning is just one

NOTE Confidence: 0.930824279785156

00:25:56.190 --> 00:25:57.246 of those techniques.

NOTE Confidence: 0.930824279785156

 $00{:}25{:}57.250 \dashrightarrow 00{:}25{:}58.735$ Now the difference between deep

NOTE Confidence: 0.930824279785156

 $00:25:58.735 \longrightarrow 00:26:00.220$ learning and other traditional machine

00:26:00.266 --> 00:26:01.916 learning techniques is that other

NOTE Confidence: 0.930824279785156

 $00{:}26{:}01.916 \dashrightarrow 00{:}26{:}03.236$ machine learning techniques require,

NOTE Confidence: 0.930824279785156

 $00:26:03.240 \longrightarrow 00:26:05.094$ you know inputs that are called

NOTE Confidence: 0.930824279785156

 $00:26:05.094 \longrightarrow 00:26:07.335$ features and so they can only handle

NOTE Confidence: 0.930824279785156

 $00:26:07.335 \longrightarrow 00:26:09.540$ data that comes in a featured format.

NOTE Confidence: 0.930824279785156

 $00:26:09.540 \longrightarrow 00:26:11.358$ So sort of predictor variables that

NOTE Confidence: 0.930824279785156

 $00:26:11.358 \longrightarrow 00:26:12.570$ you're interested in demographic

NOTE Confidence: 0.930824279785156

 $00:26:12.621 \longrightarrow 00:26:13.913$ variables or variables from

NOTE Confidence: 0.930824279785156

 $00:26:13.913 \longrightarrow 00:26:15.205$ the electronic medical record.

NOTE Confidence: 0.930824279785156

 $00:26:15.210 \longrightarrow 00:26:16.606$ Deep learning is particularly

NOTE Confidence: 0.930824279785156

 $00{:}26{:}16.606 \dashrightarrow 00{:}26{:}18.700$ unique in that it doesn't actually

NOTE Confidence: 0.930824279785156

 $00:26:18.758 \longrightarrow 00:26:20.557$ require data at all from a human.

NOTE Confidence: 0.930824279785156

00:26:20.560 --> 00:26:22.135 It doesn't require any sort

NOTE Confidence: 0.930824279785156

 $00:26:22.135 \longrightarrow 00:26:23.080$ of human interaction.

NOTE Confidence: 0.930824279785156

 $00:26:23.080 \longrightarrow 00:26:24.910$ It can learn those features on

NOTE Confidence: 0.930824279785156

 $00:26:24.910 \longrightarrow 00:26:27.469$ its own as long as it has access

 $00:26:27.469 \longrightarrow 00:26:29.377$ to what they called the sensor.

NOTE Confidence: 0.930824279785156

 $00:26:29.380 \longrightarrow 00:26:32.260$ So where the data is generated and as data

NOTE Confidence: 0.930824279785156

 $00:26:32.260 \longrightarrow 00:26:34.240$ is being generated in real time,

NOTE Confidence: 0.930824279785156

00:26:34.240 --> 00:26:36.610 deep learning algorithms can analyze it,

NOTE Confidence: 0.930824279785156

 $00:26:36.610 \longrightarrow 00:26:38.186$ identify those features that

NOTE Confidence: 0.930824279785156

 $00:26:38.186 \longrightarrow 00:26:39.368$ are very important,

NOTE Confidence: 0.930824279785156

 $00:26:39.370 \longrightarrow 00:26:42.530$ so those predictors are important and then

NOTE Confidence: 0.905940711498261

00:26:42.530 --> 00:26:44.110 create predictions.

NOTE Confidence: 0.905940711498261

00:26:44.110 --> 00:26:46.085 How exactly does this happen?

NOTE Confidence: 0.905940711498261

 $00:26:46.090 \longrightarrow 00:26:48.060$ Somebody's gotta

NOTE Confidence: 0.905940711498261

00:26:48.060 --> 00:26:50.430 program this thing right?

NOTE Confidence: 0.905940711498261

00:26:50.430 --> 00:26:51.970 Yes, it is programmed,

NOTE Confidence: 0.905940711498261

 $00{:}26{:}51.970 \dashrightarrow 00{:}26{:}54.773$ typically in Python and so the way

NOTE Confidence: 0.905940711498261

 $00{:}26{:}54.773 \longrightarrow 00{:}26{:}57.257$ that the process works for developing

NOTE Confidence: 0.905940711498261

00:26:57.257 --> 00:26:59.692 a deep learning algorithm is first

 $00:26:59.692 \longrightarrow 00:27:02.289$ you have a set of training data.

NOTE Confidence: 0.905940711498261

 $00{:}27{:}02.290 \dashrightarrow 00{:}27{:}04.257$ And the associated labels to that data.

NOTE Confidence: 0.905940711498261

 $00:27:04.260 \longrightarrow 00:27:05.670$ So you already have data

NOTE Confidence: 0.905940711498261

 $00:27:05.670 \longrightarrow 00:27:07.080$ with outcomes that you know,

NOTE Confidence: 0.905940711498261

 $00:27:07.080 \longrightarrow 00:27:08.826$ and that's the process you're

NOTE Confidence: 0.905940711498261

 $00:27:08.826 \longrightarrow 00:27:10.836$ trying to predict and then what you

NOTE Confidence: 0.905940711498261

 $00:27:10.836 \longrightarrow 00:27:12.684$ do is you design your deep learning

NOTE Confidence: 0.905940711498261

00:27:12.738 --> 00:27:14.138 algorithm using a complex series

NOTE Confidence: 0.905940711498261

 $00:27:14.138 \longrightarrow 00:27:16.026$ of what they call neural networks

NOTE Confidence: 0.905940711498261

 $00:27:16.026 \longrightarrow 00:27:18.337$ and what we do is we kind of train

NOTE Confidence: 0.905940711498261

 $00{:}27{:}18.337 \dashrightarrow 00{:}27{:}20.500$ the algorithm by looking at each of

NOTE Confidence: 0.905940711498261

 $00:27:20.500 \longrightarrow 00:27:22.308$ those training data set labels to

NOTE Confidence: 0.905940711498261

 $00:27:22.308 \longrightarrow 00:27:24.264$ identify sort of patterns in the data.

NOTE Confidence: 0.905940711498261

00:27:24.264 --> 00:27:26.112 And it takes a significant amount of

NOTE Confidence: 0.905940711498261

 $00:27:26.112 \longrightarrow 00:27:28.155$ time and a huge amount of computational

NOTE Confidence: 0.905940711498261

 $00:27:28.155 \longrightarrow 00:27:29.930$ resources in order to do that.

 $00:27:29.930 \longrightarrow 00:27:31.310$ So deep learning algorithms that

NOTE Confidence: 0.905940711498261

 $00{:}27{:}31.310 \dashrightarrow 00{:}27{:}33.054$ we developed in our lab of tentimes

NOTE Confidence: 0.905940711498261

 $00:27:33.054 \longrightarrow 00:27:34.278$ take weeks to train.

NOTE Confidence: 0.905940711498261

 $00:27:34.280 \longrightarrow 00:27:36.746$ And so we just let it run all week

NOTE Confidence: 0.905940711498261

 $00:27:36.746 \longrightarrow 00:27:39.265$ and let it run every single time

NOTE Confidence: 0.905940711498261

 $00:27:39.265 \longrightarrow 00:27:41.594$ and every piece of information

NOTE Confidence: 0.90594071149826100:27:41.594 --> 00:27:42.806 that it gets

NOTE Confidence: 0.905940711498261

 $00:27:42.810 \longrightarrow 00:27:44.170$ it looks at the

NOTE Confidence: 0.912006855010986

 $00:27:44.170 \longrightarrow 00:27:46.228$ outcome and it tries to learn

NOTE Confidence: 0.912006855010986

 $00:27:46.228 \longrightarrow 00:27:48.260$ a little bit more from it.

NOTE Confidence: 0.912006855010986

 $00{:}27{:}48.260 \dashrightarrow 00{:}27{:}50.647$ And so presumably you

NOTE Confidence: 0.912006855010986

00:27:50.647 --> 00:27:52.962 design this algorithm, you let it run,

NOTE Confidence: 0.912006855010986

 $00{:}27{:}52.962 {\:\dashrightarrow\:} 00{:}27{:}56.030$ the machine tries to learn what it can to

NOTE Confidence: 0.912006855010986

 $00:27:56.030 \longrightarrow 00:27:58.487$ try and improve its prediction each time,

NOTE Confidence: 0.912006855010986

 $00:27:58.490 \longrightarrow 00:28:01.560$ and then you test it on a separate set.

 $00:28:01.560 \longrightarrow 00:28:04.666$ Yes, exactly and in order for

NOTE Confidence: 0.912006855010986

 $00:28:04.666 \longrightarrow 00:28:07.898$ this to be utilized because

NOTE Confidence: 0.912006855010986

 $00:28:07.900 \longrightarrow 00:28:11.127$ I'm thinking about how this can be

NOTE Confidence: 0.912006855010986

 $00:28:11.127 \longrightarrow 00:28:14.582$ utilized in the clinic in terms of you

NOTE Confidence: 0.912006855010986

00:28:14.582 --> 00:28:18.410 know one day you may walk into a clinic,

NOTE Confidence: 0.912006855010986

00:28:18.410 --> 00:28:21.476 have your CT scan, have your biopsy,

NOTE Confidence: 0.912006855010986

00:28:21.480 --> 00:28:24.192 fill out some paperwork on your

NOTE Confidence: 0.912006855010986

 $00:28:24.192 \longrightarrow 00:28:27.349$ demographics and I can imagine a time

NOTE Confidence: 0.912006855010986

 $00{:}28{:}27.349 \to 00{:}28{:}30.808$ when all of that information is put into

NOTE Confidence: 0.912006855010986

 $00:28:30.808 \longrightarrow 00:28:33.888$ a computer or stored in the computer.

NOTE Confidence: 0.912006855010986

 $00{:}28{:}33.890 \dashrightarrow 00{:}28{:}36.902$ This algorithm runs in the background

NOTE Confidence: 0.912006855010986

 $00:28:36.902 \longrightarrow 00:28:40.309$ and spits out to the clinician,

NOTE Confidence: 0.912006855010986

 $00:28:40.310 \longrightarrow 00:28:42.990$ this patient's prognosis is X.

NOTE Confidence: 0.912006855010986

 $00:28:42.990 \longrightarrow 00:28:47.814$ The ideal treatment out of A, B&C is B

NOTE Confidence: 0.912006855010986

 $00:28:47.820 \longrightarrow 00:28:49.878$ and that kind of thing.

 $00:28:50.170 \longrightarrow 00:28:51.350$ I could see that happening

 $00:28:51.350 \longrightarrow 00:28:52.916$ in the future. I think we're

NOTE Confidence: 0.916711211204529

00:28:52.916 --> 00:28:55.004 a little bit far away from

NOTE Confidence: 0.916711211204529

 $00:28:55.004 \longrightarrow 00:28:56.639$ complete automation in that way,

NOTE Confidence: 0.916711211204529

 $00:28:56.640 \longrightarrow 00:28:58.464$ and partly because I think that

NOTE Confidence: 0.916711211204529

 $00:28:58.464 \longrightarrow 00:29:01.078$ we don't have a good hold on

NOTE Confidence: 0.916711211204529

 $00:29:01.078 \longrightarrow 00:29:03.371$ the data that we think is the most

NOTE Confidence: 0.916711211204529

 $00:29:03.371 \longrightarrow 00:29:05.457$ important and we don't have a good

NOTE Confidence: 0.916711211204529

00:29:05.460 --> 00:29:07.218 way of storing all that information,

NOTE Confidence: 0.916711211204529

00:29:07.220 --> 00:29:09.695 but I think that it's not something that I

NOTE Confidence: 0.916711211204529

 $00:29:09.695 \longrightarrow 00:29:12.220$ would be surprised we're doing in 5-10 years.

NOTE Confidence: 0.939991235733032

00:29:12.810 --> 00:29:15.449 Doctor Sanjay Aneja is an assistant

NOTE Confidence: 0.939991235733032

00:29:15.449 --> 00:29:16.994 professor of therapeutic radiology

NOTE Confidence: 0.939991235733032

 $00:29:16.994 \longrightarrow 00:29:19.094$ at the Yale School of Medicine.

NOTE Confidence: 0.939991235733032

 $00:29:19.100 \longrightarrow 00:29:20.584$ If you have questions,

NOTE Confidence: 0.939991235733032

 $00:29:20.584 \longrightarrow 00:29:22.068$ the address is canceranswers@yale.edu

NOTE Confidence: 0.939991235733032

 $00:29:22.068 \longrightarrow 00:29:24.118$ and past editions of the program

00:29:24.118 --> 00:29:25.990 are available in audio and written

NOTE Confidence: 0.939991235733032

 $00{:}29{:}26.048 {\:\raisebox{---}{\text{---}}}> 00{:}29{:}27.608$ form at Yale cancercenter.org.

NOTE Confidence: 0.939991235733032

00:29:27.610 --> 00:29:30.090 We hope you'll join us next week to

NOTE Confidence: 0.939991235733032

 $00{:}29{:}30.090 \dashrightarrow 00{:}29{:}32.499$ learn more about the fight against

NOTE Confidence: 0.939991235733032

 $00{:}29{:}32.499 \dashrightarrow 00{:}29{:}35.016$ cancer here on Connecticut public radio.