WEBVTT

NOTE duration:"01:13:16" NOTE recognizability:0.794

NOTE language:en-us

NOTE Confidence: 0.87841828125

 $00:00:00.000 \longrightarrow 00:00:02.695$ This is my it's my pleasure to

NOTE Confidence: 0.87841828125

 $00{:}00{:}02.695 \dashrightarrow 00{:}00{:}04.460$ introduce Jeffrey Townsend as

NOTE Confidence: 0.87841828125

 $00:00:04.460 \dashrightarrow 00:00:07.060$ the today's grand rounds speaker.

NOTE Confidence: 0.87841828125

 $00:00:07.060 \longrightarrow 00:00:09.775$ Jeff is the Elio professor of

NOTE Confidence: 0.87841828125

 $00:00:09.775 \longrightarrow 00:00:11.339$ Biostatistics and Professor of

NOTE Confidence: 0.87841828125

 $00:00:11.339 \dashrightarrow 00:00:13.280$ Ecology and evolutionary biology

NOTE Confidence: 0.87841828125

00:00:13.280 --> 00:00:15.317 and the Co leader of the Genetics,

NOTE Confidence: 0.87841828125

 $00{:}00{:}15.320 \dashrightarrow 00{:}00{:}17.268$ genomics and epigenetics program

NOTE Confidence: 0.87841828125

 $00:00:17.268 \longrightarrow 00:00:19.216$ at Yale Cancer Center.

NOTE Confidence: 0.87841828125

 $00:00:19.220 \longrightarrow 00:00:22.538$ He received his PhD in organic chemistry

NOTE Confidence: 0.87841828125

 $00{:}00{:}22.538 \dashrightarrow 00{:}00{:}24.853$ and evolutionary biology at Harvard

NOTE Confidence: 0.87841828125

00:00:24.853 --> 00:00:26.874 University and in 2019 received

NOTE Confidence: 0.87841828125

 $00:00:26.874 \longrightarrow 00:00:28.859$ the prestigious membership in the

00:00:28.859 --> 00:00:30.850 Connecticut Academy of Sciences and.

NOTE Confidence: 0.87841828125

 $00{:}00{:}30.850 \dashrightarrow 00{:}00{:}33.293$ Engineering for his work in

NOTE Confidence: 0.87841828125

00:00:33.293 --> 00:00:35.505 developing innovative tools for

NOTE Confidence: 0.87841828125

00:00:35.505 --> 00:00:37.717 to study population biology,

NOTE Confidence: 0.87841828125

 $00:00:37.720 \longrightarrow 00:00:39.484$ including evolution of

NOTE Confidence: 0.87841828125

 $00:00:39.484 \longrightarrow 00:00:40.660$ antimicrobial resistance,

NOTE Confidence: 0.87841828125

 $00:00:40.660 \longrightarrow 00:00:43.125$ disease evolution and transmission and

NOTE Confidence: 0.87841828125

 $00:00:43.125 \longrightarrow 00:00:46.470$ evolution of of tumor biology tumorigenesis.

NOTE Confidence: 0.87841828125

 $00:00:46.470 \longrightarrow 00:00:49.041$ His research enabled curtailment of

NOTE Confidence: 0.87841828125

 $00:00:49.041 \longrightarrow 00:00:51.274$ pathogen evolution outbreak mitigation

NOTE Confidence: 0.87841828125

 $00{:}00{:}51.274 \dashrightarrow 00{:}00{:}53.734$ and used to inform the rapeutic

NOTE Confidence: 0.87841828125

 $00:00:53.734 \longrightarrow 00:00:56.050$ approaches in cancer metastasis.

NOTE Confidence: 0.87841828125

 $00:00:56.050 \longrightarrow 00:00:58.550$ So in recognition of his

NOTE Confidence: 0.87841828125

 $00:00:58.550 \longrightarrow 00:01:00.054$ prominence in the field,

NOTE Confidence: 0.87841828125

00:01:00.054 --> 00:01:02.572 in 2021 Jeff was selected as the Co

NOTE Confidence: 0.87841828125

 $00{:}01{:}02.572 \dashrightarrow 00{:}01{:}04.609$ Chair elect of the Cancer Revolution

 $00:01:04.609 \longrightarrow 00:01:07.066$ Working Group by the ACR and his

NOTE Confidence: 0.87841828125

 $00{:}01{:}07.138 \dashrightarrow 00{:}01{:}09.917$ lab is currently working on on many

NOTE Confidence: 0.87841828125

00:01:09.917 --> 00:01:11.786 projects including buying developing

NOTE Confidence: 0.87841828125

 $00{:}01{:}11.786 \dashrightarrow 00{:}01{:}14.490$ bioinformatics tools for cancer

NOTE Confidence: 0.87841828125

 $00:01:14.490 \longrightarrow 00:01:16.518$ genetics epigenetics epidemiology.

NOTE Confidence: 0.87841828125

 $00:01:16.520 \longrightarrow 00:01:18.692$ And nonlinear mathematical

NOTE Confidence: 0.87841828125

00:01:18.692 --> 00:01:21.588 models of disease epidemiology.

NOTE Confidence: 0.87841828125

 $00:01:21.590 \longrightarrow 00:01:23.280$ So it's my pleasure to give the

NOTE Confidence: 0.87841828125

 $00:01:23.280 \longrightarrow 00:01:25.288$ podium to Jeff and we look forward

NOTE Confidence: 0.87841828125

00:01:25.288 --> 00:01:26.913 to hearing your your presentation.

NOTE Confidence: 0.953467

 $00:01:29.150 \longrightarrow 00:01:31.970$ Thank you House for that wonderful

NOTE Confidence: 0.953467

 $00{:}01{:}31.970 \dashrightarrow 00{:}01{:}34.830$ introduction and thank you and and

NOTE Confidence: 0.817638520909091

 $00{:}01{:}34.830 \dashrightarrow 00{:}01{:}37.632$ and Ken for the encouragement to

NOTE Confidence: 0.817638520909091

 $00{:}01{:}37.632 \dashrightarrow 00{:}01{:}40.350$ present today for this audience.

NOTE Confidence: 0.817638520909091

 $00:01:40.350 \longrightarrow 00:01:42.975$ And thank you all for basically the

00:01:42.975 --> 00:01:45.029 opportunity to present the kind of

NOTE Confidence: 0.817638520909091

 $00:01:45.029 \longrightarrow 00:01:47.350$ work that we've been doing in my lab.

NOTE Confidence: 0.817638520909091

00:01:47.350 --> 00:01:51.140 The title of. My talk is why me?

NOTE Confidence: 0.817638520909091

00:01:51.140 --> 00:01:53.435 The mutagenic origins of cancer

NOTE Confidence: 0.817638520909091

 $00{:}01{:}53.435 \dashrightarrow 00{:}01{:}55.730$ for individual tumors and tumor

NOTE Confidence: 0.817638520909091

00:01:55.808 --> 00:01:58.230 types and I'm going to spend some

NOTE Confidence: 0.817638520909091

 $00:01:58.230 \longrightarrow 00:01:59.632$ time talking about that title.

NOTE Confidence: 0.817638520909091

 $00:01:59.632 \longrightarrow 00:02:01.210$ But first let me just go

NOTE Confidence: 0.817638520909091

 $00{:}02{:}01.268 --> 00{:}02{:}02.480$ by my disclosure slide.

NOTE Confidence: 0.817638520909091

00:02:02.480 --> 00:02:05.476 I have done consulting for Black Diamond

NOTE Confidence: 0.817638520909091

 $00{:}02{:}05.476 \dashrightarrow 00{:}02{:}07.920$ The rapeutics and Agios Pharmaceuticals.

NOTE Confidence: 0.817638520909091

00:02:07.920 --> 00:02:10.848 And so this title, why me?

NOTE Confidence: 0.817638520909091

 $00:02:10.850 \longrightarrow 00:02:13.825$ Just was inspired by the fact that

NOTE Confidence: 0.817638520909091

 $00:02:13.830 \longrightarrow 00:02:16.266$ as I started working on this work

NOTE Confidence: 0.817638520909091

00:02:16.270 --> 00:02:18.290 originally largely with Vincent Kantaro,

NOTE Confidence: 0.817638520909091

 $00:02:18.290 \longrightarrow 00:02:20.208$ who you'll see a picture of later,

 $00:02:20.210 \longrightarrow 00:02:22.130$ we realized that what we were doing to

NOTE Confidence: 0.817638520909091

 $00:02:22.130 \longrightarrow 00:02:24.302$ try to understand just what individual

NOTE Confidence: 0.817638520909091

 $00:02:24.302 \longrightarrow 00:02:26.347$ variants were contributing to cancer.

NOTE Confidence: 0.817638520909091

 $00:02:26.350 \longrightarrow 00:02:28.102$ Actually to some degree and the

NOTE Confidence: 0.817638520909091

 $00:02:28.102 \longrightarrow 00:02:30.090$ degree to which it addresses it,

NOTE Confidence: 0.817638520909091

00:02:30.090 --> 00:02:31.588 I'd love for you to think about,

NOTE Confidence: 0.817638520909091

 $00:02:31.590 \longrightarrow 00:02:33.816$ as I give this talk answers the

NOTE Confidence: 0.817638520909091

 $00:02:33.816 \longrightarrow 00:02:36.129$ question for an individual patient,

NOTE Confidence: 0.817638520909091

 $00:02:36.130 \longrightarrow 00:02:38.110$ what the causation of their individual.

NOTE Confidence: 0.817638520909091

00:02:38.110 --> 00:02:39.580 The answer was and I'll go through

NOTE Confidence: 0.817638520909091

 $00:02:39.580 \longrightarrow 00:02:41.139$ a lot of detail about that,

NOTE Confidence: 0.817638520909091

 $00:02:41.140 \longrightarrow 00:02:43.384$ but that that gets down to

NOTE Confidence: 0.817638520909091

00:02:43.384 --> 00:02:44.506 the mutagenic origins.

NOTE Confidence: 0.817638520909091

 $00{:}02{:}44.510 \dashrightarrow 00{:}02{:}46.560$ Again not the physiological origins

NOTE Confidence: 0.817638520909091

 $00:02:46.560 \longrightarrow 00:02:49.060$ but mutagenic origins of cancer for

00:02:49.060 --> 00:02:50.995 individual tumors and tumor types.

NOTE Confidence: 0.817638520909091

 $00{:}02{:}51.000 \dashrightarrow 00{:}02{:}53.241$ And I think this is a very it's obviously

NOTE Confidence: 0.817638520909091

00:02:53.241 --> 00:02:55.696 of interest to anyone who studies cancer,

NOTE Confidence: 0.817638520909091

 $00:02:55.700 \longrightarrow 00:02:58.082$ what the mutagenic origins of cancer

NOTE Confidence: 0.817638520909091

00:02:58.082 --> 00:03:00.809 are and certainly of interest in one

NOTE Confidence: 0.817638520909091

 $00{:}03{:}00.809 \dashrightarrow 00{:}03{:}03.294$ way or another to patients who have

NOTE Confidence: 0.817638520909091

 $00{:}03{:}03.300 \dashrightarrow 00{:}03{:}06.100$ have a have come down with cancer.

NOTE Confidence: 0.8764596788

00:03:08.300 --> 00:03:10.108 It has been widely reported that one of

NOTE Confidence: 0.8764596788

 $00{:}03{:}10.108 \dashrightarrow 00{:}03{:}12.009$ the most difficult questions that patients

NOTE Confidence: 0.8764596788

 $00:03:12.009 \longrightarrow 00:03:14.103$ and doctors struggle with upon diagnosis

NOTE Confidence: 0.8764596788

 $00:03:14.153 \longrightarrow 00:03:16.394$ of cancer is the question, why me? Why?

NOTE Confidence: 0.8764596788

 $00:03:16.394 \longrightarrow 00:03:18.760$ Why was I struck with this ailment?

NOTE Confidence: 0.8764596788

00:03:18.760 --> 00:03:20.804 And it's natural for patients to want

NOTE Confidence: 0.8764596788

 $00:03:20.804 \longrightarrow 00:03:22.976$ to understand the causes behind their

NOTE Confidence: 0.8764596788

 $00:03:22.976 \longrightarrow 00:03:25.652$ calamities, and it's difficult to hear only

NOTE Confidence: 0.8764596788

 $00:03:25.652 \longrightarrow 00:03:27.879$ statistics and probabilities as a response.

 $00:03:27.880 \longrightarrow 00:03:29.546$ So the traditional way that you answer

NOTE Confidence: 0.8764596788

 $00{:}03{:}29.546 \dashrightarrow 00{:}03{:}31.039$ this question of why me is to say,

NOTE Confidence: 0.8764596788

 $00:03:31.040 \longrightarrow 00:03:33.008$ well, did you smoke that elevates

NOTE Confidence: 0.8764596788

00:03:33.008 --> 00:03:33.992 your process probability.

NOTE Confidence: 0.8764596788

 $00:03:34.000 \longrightarrow 00:03:36.094$ Do you have this genetic predisposition

NOTE Confidence: 0.8764596788

00:03:36.094 --> 00:03:37.490 that elevates your probability?

NOTE Confidence: 0.8764596788

00:03:37.490 --> 00:03:40.773 Um, you know, how old are you?

NOTE Confidence: 0.8764596788

 $00:03:40.773 \longrightarrow 00:03:42.528$ What is your ethnic background?

NOTE Confidence: 0.8764596788

 $00:03:42.530 \longrightarrow 00:03:44.015$ There's lots of different predictors

NOTE Confidence: 0.8764596788

00:03:44.015 --> 00:03:45.500 for whether or not someone

NOTE Confidence: 0.8764596788

 $00:03:45.549 \longrightarrow 00:03:46.869$ might come down with cancer.

NOTE Confidence: 0.8764596788

 $00:03:46.870 \longrightarrow 00:03:48.070$ But those aren't answers about why

NOTE Confidence: 0.8764596788

 $00{:}03{:}48.070 \dashrightarrow 00{:}03{:}49.369$ you came down with your cancer.

NOTE Confidence: 0.8764596788

 $00:03:49.370 \longrightarrow 00:03:51.390$ Those are answers about

NOTE Confidence: 0.8764596788

 $00:03:51.390 \longrightarrow 00:03:53.410$ generalizations about your life.

 $00:03:53.410 \longrightarrow 00:03:54.718$ So to date,

NOTE Confidence: 0.8764596788

 $00{:}03{:}54.718 {\:\dashrightarrow\:} 00{:}03{:}56.898$ these statistics and probabilities are

NOTE Confidence: 0.8764596788

 $00:03:56.898 \longrightarrow 00:03:59.391$ nearly the only answer that science

NOTE Confidence: 0.8764596788

 $00:03:59.391 \longrightarrow 00:04:02.140$ and medicine has been able to give.

NOTE Confidence: 0.8764596788

 $00:04:02.140 \longrightarrow 00:04:04.456$ And one answer that's sort of

NOTE Confidence: 0.8764596788

00:04:04.456 --> 00:04:06.780 straightforward and obvious and if you

NOTE Confidence: 0.8764596788

 $00:04:06.780 \longrightarrow 00:04:09.265$ are proponent of sort of the genetic

NOTE Confidence: 0.8764596788

 $00{:}04{:}09.265 \dashrightarrow 00{:}04{:}11.151$ evolutionary model of what makes

NOTE Confidence: 0.8764596788

00:04:11.151 --> 00:04:13.353 cancer happen is that mutations happen

NOTE Confidence: 0.8764596788

00:04:13.360 --> 00:04:15.418 and that's why you have your cancer.

NOTE Confidence: 0.8764596788

00:04:15.420 --> 00:04:16.580 It's a very general answer,

NOTE Confidence: 0.8764596788

00:04:16.580 --> 00:04:20.040 though it's not terribly satisfying,

NOTE Confidence: 0.8764596788

00:04:20.040 --> 00:04:21.328 but it can be broken down into a

NOTE Confidence: 0.8764596788

 $00:04:21.328 \longrightarrow 00:04:22.888$ lot of different kinds of mutations.

NOTE Confidence: 0.8764596788

 $00:04:22.890 \longrightarrow 00:04:25.710$ So there are clock like endogenous

NOTE Confidence: 0.8764596788

 $00:04:25.710 \longrightarrow 00:04:28.134$ mutations and processes that fuel

 $00:04:28.134 \longrightarrow 00:04:31.396$ mutation throughout the body over a lifetime.

NOTE Confidence: 0.8764596788

 $00:04:31.400 \longrightarrow 00:04:33.140$ So as your body ages,

NOTE Confidence: 0.8764596788

 $00:04:33.140 \longrightarrow 00:04:35.774$ you get these mutations that happen

NOTE Confidence: 0.8764596788

 $00:04:35.774 \longrightarrow 00:04:38.047$ simply because the cellular processes

NOTE Confidence: 0.8764596788

 $00{:}04{:}38.047 \dashrightarrow 00{:}04{:}41.155$ that reproduce your DNA are not perfectly

NOTE Confidence: 0.8764596788

 $00:04:41.160 \longrightarrow 00:04:43.500$ designed to reproduce it perfectly,

NOTE Confidence: 0.8764596788

 $00:04:43.500 \longrightarrow 00:04:45.635$ and they can't be just because of

NOTE Confidence: 0.8764596788

 $00:04:45.635 \longrightarrow 00:04:47.664$ the third law of thermodynamics.

NOTE Confidence: 0.8764596788

00:04:47.664 --> 00:04:49.388 So they're endogenous processes

NOTE Confidence: 0.8764596788

 $00:04:49.388 \longrightarrow 00:04:51.553$ that fuel mutation in your

NOTE Confidence: 0.8764596788

00:04:51.553 --> 00:04:53.205 body throughout your lifetime.

NOTE Confidence: 0.8764596788

 $00:04:53.210 \longrightarrow 00:04:56.450$ There are also mutational processes

NOTE Confidence: 0.8764596788

 $00:04:56.450 \longrightarrow 00:04:58.448$ that are fueled by exogenous sources,

NOTE Confidence: 0.8764596788

 $00:04:58.450 \longrightarrow 00:05:00.094$ such as viral infection

NOTE Confidence: 0.8764596788

 $00:05:00.094 \longrightarrow 00:05:01.327$ inducing applebach activity.

 $00:05:01.330 \longrightarrow 00:05:03.400$ So viral infection can cause your

NOTE Confidence: 0.8764596788

 $00:05:03.400 \longrightarrow 00:05:05.750$ cell to react in certain ways,

NOTE Confidence: 0.8764596788

 $00:05:05.750 \longrightarrow 00:05:07.514$ maybe for cellular defense.

NOTE Confidence: 0.8764596788

 $00:05:07.514 \longrightarrow 00:05:09.719$ And those mutations that are

NOTE Confidence: 0.8764596788

 $00:05:09.719 \longrightarrow 00:05:12.270$ brought about as sort of secondary

NOTE Confidence: 0.8764596788

 $00:05:12.270 \longrightarrow 00:05:14.788$ consequences of your response to viral

NOTE Confidence: 0.8764596788

 $00:05:14.788 \longrightarrow 00:05:17.203$ infection can also lead to cancer.

NOTE Confidence: 0.8764596788

00:05:17.203 --> 00:05:19.549 And the third category is exogenous

NOTE Confidence: 0.8764596788

 $00{:}05{:}19.549 \dashrightarrow 00{:}05{:}21.471$ mutagenic sources such as to bacco

NOTE Confidence: 0.8764596788

00:05:21.471 --> 00:05:23.661 smoke that may affect your lungs.

NOTE Confidence: 0.8764596788

 $00:05:23.670 \longrightarrow 00:05:26.407$ For your head and neck or UV

NOTE Confidence: 0.8764596788

 $00{:}05{:}26.407 \dashrightarrow 00{:}05{:}29.078$ radiation that can affect your skin.

NOTE Confidence: 0.8764596788

 $00{:}05{:}29.080 \dashrightarrow 00{:}05{:}30.968$ So these are all sources of mutation that

NOTE Confidence: 0.8764596788

 $00:05:30.968 \longrightarrow 00:05:32.712$ we know about and probabilistically we

NOTE Confidence: 0.8764596788

00:05:32.712 --> 00:05:34.830 can tell patients about the fact that,

NOTE Confidence: 0.8764596788

00:05:34.830 --> 00:05:35.220 you know,

 $00:05:35.220 \longrightarrow 00:05:36.585$ exposing yourself to a lot of sun

NOTE Confidence: 0.8764596788

 $00{:}05{:}36.585 \dashrightarrow 00{:}05{:}38.158$ may increase your risk for Melanoma.

NOTE Confidence: 0.8764596788

 $00:05:38.160 \longrightarrow 00:05:39.040$ If you have a Melanoma,

NOTE Confidence: 0.8764596788

 $00:05:39.040 \longrightarrow 00:05:41.182$ it may be partly due to the fact that

NOTE Confidence: 0.8764596788

 $00:05:41.182 \longrightarrow 00:05:43.354$ you exposed yourself to a lot of sun

NOTE Confidence: 0.8764596788

00:05:43.354 --> 00:05:45.557 light at some point during your life.

NOTE Confidence: 0.8764596788

 $00:05:45.560 \longrightarrow 00:05:48.360$ Now one of the I think quite

NOTE Confidence: 0.8764596788

 $00:05:48.360 \longrightarrow 00:05:50.043$ revolutionary sort of discoveries

NOTE Confidence: 0.8764596788

 $00:05:50.043 \longrightarrow 00:05:53.243$ of the of recent times was that we

NOTE Confidence: 0.8764596788

00:05:53.243 --> 00:05:56.127 can actually trace all a lot of

NOTE Confidence: 0.8764596788

 $00:05:56.127 \longrightarrow 00:05:58.474$ those sources I should say certainly

NOTE Confidence: 0.8764596788

 $00:05:58.474 \longrightarrow 00:06:00.706$ all the sources I just mentioned,

NOTE Confidence: 0.8764596788

 $00{:}06{:}00.710 \dashrightarrow 00{:}06{:}03.916$ but many others as well to when we

NOTE Confidence: 0.8764596788

 $00:06:03.916 \longrightarrow 00:06:06.660$ when we sequence a tumor for instance

NOTE Confidence: 0.796650816111111

 $00:06:06.749 \longrightarrow 00:06:10.326$ we can trace signatures of those different

 $00:06:10.326 \longrightarrow 00:06:12.700$ sources in the DNA mutations that happen.

NOTE Confidence: 0.796650816111111

 $00{:}06{:}12.700 \dashrightarrow 00{:}06{:}15.500$ So certain DNA mutations are more frequent.

NOTE Confidence: 0.796650816111111

 $00:06:15.500 \longrightarrow 00:06:16.795$ And I'll explain this in

NOTE Confidence: 0.796650816111111

 $00:06:16.795 \longrightarrow 00:06:18.090$ more detail a little later.

NOTE Confidence: 0.796650816111111

 $00{:}06{:}18.090 \dashrightarrow 00{:}06{:}20.205$ Certain mutations are a little

NOTE Confidence: 0.796650816111111

00:06:20.205 --> 00:06:22.690 more frequent when you have a UV

NOTE Confidence: 0.796650816111111

 $00:06:22.690 \longrightarrow 00:06:24.330$ mutagenesis and other mutations are

NOTE Confidence: 0.796650816111111

00:06:24.330 --> 00:06:26.394 more frequent when you have just

NOTE Confidence: 0.7966508161111111

 $00{:}06{:}26.394 \dashrightarrow 00{:}06{:}27.802$ simple aging processes, etcetera.

NOTE Confidence: 0.796650816111111

 $00:06:27.802 \longrightarrow 00:06:29.986$ And it turns out that there are

NOTE Confidence: 0.7966508161111111

 $00{:}06{:}29.986 \to 00{:}06{:}31.363$ enough mutations in the typical

NOTE Confidence: 0.796650816111111

 $00:06:31.363 \longrightarrow 00:06:33.150$ tumor that you can do a sort of

NOTE Confidence: 0.796650816111111

 $00:06:33.150 \longrightarrow 00:06:34.053$ machine learning deconvolution.

NOTE Confidence: 0.7966508161111111

 $00:06:34.053 \longrightarrow 00:06:36.160$ And I won't go into the detail

NOTE Confidence: 0.796650816111111

 $00:06:36.215 \longrightarrow 00:06:37.713$ about that to sort of figure out

NOTE Confidence: 0.796650816111111

 $00:06:37.713 \longrightarrow 00:06:39.764$ for a given tumor what were the

 $00:06:39.764 \longrightarrow 00:06:41.124$ different sources that contributed

NOTE Confidence: 0.796650816111111

 $00:06:41.124 \longrightarrow 00:06:44.282$ these mutations and this is really,

NOTE Confidence: 0.796650816111111

 $00:06:44.282 \longrightarrow 00:06:45.518$ really extraordinary.

NOTE Confidence: 0.796650816111111

 $00:06:45.520 \longrightarrow 00:06:49.085$ That we can figure that out the one and

NOTE Confidence: 0.796650816111111

 $00:06:49.085 \longrightarrow 00:06:51.380$ and just to give you a little bit more

NOTE Confidence: 0.796650816111111

 $00:06:51.447 \longrightarrow 00:06:53.820$ of a a sort of a a more detail on that.

NOTE Confidence: 0.796650816111111

 $00:06:53.820 \longrightarrow 00:06:56.137$ So here's S1 which is typically it's

NOTE Confidence: 0.796650816111111

 $00{:}06{:}56.137 \dashrightarrow 00{:}06{:}58.187$ called emanation of five methyl cytosine

NOTE Confidence: 0.796650816111111

 $00:06:58.187 \longrightarrow 00:07:00.504$ and that's considered to be sort of

NOTE Confidence: 0.796650816111111

 $00:07:00.568 \longrightarrow 00:07:02.662$ an endogenous aging process that sort

NOTE Confidence: 0.7966508161111111

 $00:07:02.662 \longrightarrow 00:07:04.934$ of occurs without any particular cause

NOTE Confidence: 0.796650816111111

 $00:07:04.934 \longrightarrow 00:07:07.556$ other than our other time passing

NOTE Confidence: 0.796650816111111

 $00{:}07{:}07.556 \dashrightarrow 00{:}07{:}10.400$ for our body through development.

NOTE Confidence: 0.796650816111111

 $00:07:10.400 \longrightarrow 00:07:12.542 \text{ S2}$ is is one of two signatures

NOTE Confidence: 0.796650816111111

 $00:07:12.542 \longrightarrow 00:07:14.525$ that we associate with apobec

00:07:14.525 --> 00:07:16.019 activity there's defective.

NOTE Confidence: 0.796650816111111

 $00:07:16.020 \longrightarrow 00:07:17.650$ From August recombination DNA repair,

NOTE Confidence: 0.796650816111111

 $00:07:17.650 \longrightarrow 00:07:20.085$ which may be mutation based

NOTE Confidence: 0.796650816111111

 $00:07:20.085 \longrightarrow 00:07:21.546$ and therefore endogenous,

NOTE Confidence: 0.796650816111111

 $00:07:21.550 \longrightarrow 00:07:23.308$ but related to a very specific

NOTE Confidence: 0.796650816111111

 $00:07:23.308 \longrightarrow 00:07:24.871$ process that might be treatable

NOTE Confidence: 0.796650816111111

 $00{:}07{:}24.871 \dashrightarrow 00{:}07{:}27.195$ to bacco smoke which you can see of

NOTE Confidence: 0.796650816111111

00:07:27.195 --> 00:07:29.050 course largely affects lung cancer,

NOTE Confidence: 0.7966508161111111

 $00{:}07{:}29.050 \dashrightarrow 00{:}07{:}34.126$ but you can also see some for for liver,

NOTE Confidence: 0.796650816111111

 $00:07:34.130 \longrightarrow 00:07:35.396$ head etcetera, kidney,

NOTE Confidence: 0.7966508161111111

 $00:07:35.396 \longrightarrow 00:07:37.928$ there's some other sources to bacco smoking.

NOTE Confidence: 0.796650816111111

 $00:07:37.930 \longrightarrow 00:07:40.170$ So an S5 which also you see

NOTE Confidence: 0.796650816111111

 $00:07:40.170 \longrightarrow 00:07:41.570$ is large circles here.

NOTE Confidence: 0.7966508161111111

 $00:07:41.570 \longrightarrow 00:07:43.875$ That's another signature that has

NOTE Confidence: 0.796650816111111

 $00:07:43.875 \longrightarrow 00:07:46.180$ been traced essentially to aging.

NOTE Confidence: 0.796650816111111 00:07:46.180 --> 00:07:46.558 Processes.

 $00:07:46.558 \longrightarrow 00:07:49.204$ Although it's a little less well understood

NOTE Confidence: 0.796650816111111

 $00{:}07{:}49.204 \dashrightarrow 00{:}07{:}52.116$ what the what the underlying basis of it is,

NOTE Confidence: 0.796650816111111

 $00:07:52.120 \longrightarrow 00:07:55.600$ it's very clear that age is highly correlated

NOTE Confidence: 0.796650816111111

00:07:55.600 --> 00:07:59.048 with the amount of SS5 mutation you get.

NOTE Confidence: 0.796650816111111

 $00:07:59.050 \longrightarrow 00:07:59.824$ Defective DNA,

NOTE Confidence: 0.796650816111111

 $00:07:59.824 \longrightarrow 00:08:00.598$ mismatch repair,

NOTE Confidence: 0.796650816111111

 $00:08:00.598 \longrightarrow 00:08:01.759$ ultraviolet light etcetera.

NOTE Confidence: 0.796650816111111

 $00:08:01.760 \longrightarrow 00:08:03.454$ And you can see these distribute themselves

NOTE Confidence: 0.796650816111111

 $00:08:03.454 \longrightarrow 00:08:04.779$ differently for different types of cancer.

NOTE Confidence: 0.796650816111111

 $00{:}08{:}04.780 \dashrightarrow 00{:}08{:}06.523$ And so again this is very consistent

NOTE Confidence: 0.7966508161111111

 $00:08:06.523 \longrightarrow 00:08:08.189$ what we knew already in a lot,

NOTE Confidence: 0.796650816111111

 $00:08:08.190 \longrightarrow 00:08:09.654$ very consistent with what we generally

NOTE Confidence: 0.796650816111111

 $00{:}08{:}09.654 \dashrightarrow 00{:}08{:}11.109$ did which was say predictably like

NOTE Confidence: 0.7966508161111111

 $00{:}08{:}11.109 \dashrightarrow 00{:}08{:}13.040$ if you have a lot of exposure to sun,

NOTE Confidence: 0.796650816111111

 $00:08:13.040 \longrightarrow 00:08:15.231$ you're more likely to get UV exposure

00:08:15.231 --> 00:08:17.745 and that UV exposure then is more

NOTE Confidence: 0.796650816111111

 $00{:}08{:}17.745 \dashrightarrow 00{:}08{:}20.007$ likely to translate to mutations that

NOTE Confidence: 0.796650816111111

00:08:20.010 --> 00:08:21.865 that may or may not cause Melanoma.

NOTE Confidence: 0.796650816111111

00:08:21.870 --> 00:08:24.158 But but once you have those mutations there,

NOTE Confidence: 0.796650816111111

 $00:08:24.160 \longrightarrow 00:08:26.184$ you know they may, they may cause that.

NOTE Confidence: 0.796650816111111

 $00{:}08{:}26.190 \dashrightarrow 00{:}08{:}28.384$ So this is great we've we've got, we've got.

NOTE Confidence: 0.796650816111111

 $00:08:28.384 \longrightarrow 00:08:29.444$ The ability to see the,

NOTE Confidence: 0.796650816111111

 $00:08:29.450 \longrightarrow 00:08:32.257$ the sort of the trace or exposure

NOTE Confidence: 0.7966508161111111

 $00:08:32.257 \longrightarrow 00:08:34.890$ in cells to these mutagens.

NOTE Confidence: 0.796650816111111

 $00:08:34.890 \longrightarrow 00:08:35.250$ The,

NOTE Confidence: 0.796650816111111

 $00{:}08{:}35.250 \dashrightarrow 00{:}08{:}37.770$ the one thing that's missing though is,

NOTE Confidence: 0.796650816111111

 $00:08:37.770 \longrightarrow 00:08:40.688$ is that the extent to which each of

NOTE Confidence: 0.796650816111111

 $00:08:40.688 \longrightarrow 00:08:42.568$ those processes actually contribute to

NOTE Confidence: 0.7966508161111111

 $00:08:42.568 \longrightarrow 00:08:44.210$ tumorigenesis still remains unknown.

NOTE Confidence: 0.796650816111111

 $00:08:44.210 \longrightarrow 00:08:45.694$ So we can look at what mutations

NOTE Confidence: 0.796650816111111

 $00:08:45.694 \longrightarrow 00:08:46.730$ are in the genome.

00:08:46.730 --> 00:08:48.539 But if I count up mutations in the genome,

NOTE Confidence: 0.796650816111111

00:08:48.540 --> 00:08:49.252 here's one, here's one,

NOTE Confidence: 0.796650816111111

 $00:08:49.252 \longrightarrow 00:08:50.070$ here's one, here's one.

NOTE Confidence: 0.796650816111111

00:08:50.070 --> 00:08:51.910 That doesn't tell me how much of those,

NOTE Confidence: 0.796650816111111

 $00:08:51.910 \longrightarrow 00:08:53.542$ each of those mutations are actually

NOTE Confidence: 0.796650816111111

00:08:53.542 --> 00:08:54.630 contributing to tumor Genesis.

NOTE Confidence: 0.8410616175

 $00:08:54.630 \longrightarrow 00:08:56.709$ In fact, most of those mutations are

NOTE Confidence: 0.8410616175

00:08:56.709 --> 00:08:58.399 not contributing to tumor Genesis.

NOTE Confidence: 0.8410616175

 $00{:}08{:}58.400 \dashrightarrow 00{:}09{:}00{.}325$ And most analysis find that there's only

NOTE Confidence: 0.8410616175

 $00{:}09{:}00.325 \dashrightarrow 00{:}09{:}02.014$ a few mutations that are contributing

NOTE Confidence: 0.8410616175

 $00{:}09{:}02.014 \dashrightarrow 00{:}09{:}03.904$ at a significant level sort of at

NOTE Confidence: 0.8410616175

 $00:09:03.958 \longrightarrow 00:09:05.678$ this SNV single nucleotide variant,

NOTE Confidence: 0.8410616175

 $00{:}09{:}05.680 \dashrightarrow 00{:}09{:}09.898$ level two to two tumor Genesis.

NOTE Confidence: 0.8410616175

 $00{:}09{:}09{.}900 \dashrightarrow 00{:}09{:}13.140$ So we really need to have more in our,

NOTE Confidence: 0.8410616175

 $00:09:13.140 \longrightarrow 00:09:15.384$ you know, another tool in our

 $00:09:15.384 \longrightarrow 00:09:16.880$ plate to figure out.

NOTE Confidence: 0.8410616175

 $00:09:16.880 \longrightarrow 00:09:19.376$ What the level each of these

NOTE Confidence: 0.8410616175

 $00{:}09{:}19.380 \dashrightarrow 00{:}09{:}20.868$ endogenous and exogenous processes

NOTE Confidence: 0.8410616175

 $00:09:20.868 \longrightarrow 00:09:23.100$ are contributing to a given cancer,

NOTE Confidence: 0.8410616175

 $00:09:23.100 \longrightarrow 00:09:24.330$ and here's just a schematic

NOTE Confidence: 0.8410616175

00:09:24.330 --> 00:09:25.560 for this right you know,

NOTE Confidence: 0.8410616175

 $00:09:25.560 \longrightarrow 00:09:27.516$ so the mutation 1, mutation 2,

NOTE Confidence: 0.8410616175

00:09:27.520 --> 00:09:29.557 up to mutation N However many there

NOTE Confidence: 0.8410616175

 $00{:}09{:}29.557 \dashrightarrow 00{:}09{:}31.958$ are that are really affecting cancer,

NOTE Confidence: 0.8410616175

 $00:09:31.960 \longrightarrow 00:09:34.235$ they can cause increased cellular

NOTE Confidence: 0.8410616175

 $00:09:34.235 \longrightarrow 00:09:35.600$ proliferation and survival.

NOTE Confidence: 0.8410616175

00:09:35.600 --> 00:09:39.209 And sunlight may be contributing to UV

NOTE Confidence: 0.8410616175

 $00:09:39.209 \longrightarrow 00:09:41.063$ radiation may be contributing to some

NOTE Confidence: 0.8410616175

 $00:09:41.063 \longrightarrow 00:09:43.063$ of those mutations more than others

NOTE Confidence: 0.8410616175

 $00:09:43.063 \longrightarrow 00:09:45.103$ because certain mutations are caused by

NOTE Confidence: 0.8410616175

 $00:09:45.103 \longrightarrow 00:09:47.229$ sunlight and other ones are not similarly.

00:09:47.230 --> 00:09:48.718 Aging may contribute to some of

NOTE Confidence: 0.8410616175

 $00:09:48.718 \dashrightarrow 00:09:50.060$ those mutations more than others.

NOTE Confidence: 0.8410616175

 $00:09:50.060 \longrightarrow 00:09:52.307$ And what I've got right here is,

NOTE Confidence: 0.8410616175

00:09:52.310 --> 00:09:52.924 you know,

NOTE Confidence: 0.8410616175

 $00:09:52.924 \longrightarrow 00:09:55.380$ if you take nothing else from this lecture,

NOTE Confidence: 0.8410616175

 $00:09:55.380 \longrightarrow 00:09:56.668$ this is the main thing that I

NOTE Confidence: 0.8410616175

 $00:09:56.668 \longrightarrow 00:09:57.832$ want to emphasize is that there's

NOTE Confidence: 0.8410616175

 $00:09:57.832 \longrightarrow 00:09:58.960$ sort of two stages to this.

NOTE Confidence: 0.8410616175

 $00:09:58.960 \longrightarrow 00:10:00.148$ One is, you know,

NOTE Confidence: 0.8410616175

 $00{:}10{:}00.148 \dashrightarrow 00{:}10{:}01.930$ what mutagens have you been exposed

NOTE Confidence: 0.8410616175

 $00:10:01.987 \longrightarrow 00:10:04.024$ to and contributing to the set of

NOTE Confidence: 0.8410616175

 $00:10:04.024 \longrightarrow 00:10:06.078$ mutations that are causing your cancer?

NOTE Confidence: 0.8410616175

 $00{:}10{:}06.080 \dashrightarrow 00{:}10{:}08.360$ And the 2nd is how much do each of those

NOTE Confidence: 0.8410616175

 $00:10:08.424 \longrightarrow 00:10:10.764$ mutations actually contribute to the

NOTE Confidence: 0.8410616175

 $00:10:10.764 \longrightarrow 00:10:12.636$ increased cellular proliferation and

 $00:10:12.636 \longrightarrow 00:10:15.000$ survival that is the phenotype of cancer.

NOTE Confidence: 0.88202142375

 $00:10:17.260 \dashrightarrow 00:10:19.716$ And there's a way to figure this out.

NOTE Confidence: 0.88202142375

 $00:10:19.720 \longrightarrow 00:10:21.176$ But to figure it out we we need

NOTE Confidence: 0.88202142375

 $00:10:21.176 \longrightarrow 00:10:22.720$ to sort of deconvolve something.

NOTE Confidence: 0.88202142375

 $00:10:22.720 \longrightarrow 00:10:24.256$ And this is an old idea and I'm

NOTE Confidence: 0.88202142375

 $00:10:24.256 \longrightarrow 00:10:25.800$ going to go through it in some

NOTE Confidence: 0.88202142375

00:10:25.800 --> 00:10:27.479 detail just to make sure that it's

NOTE Confidence: 0.88202142375

 $00{:}10{:}27.479 \dashrightarrow 00{:}10{:}29.403$ clear to everyone that cancers are

NOTE Confidence: 0.88202142375

00:10:29.403 --> 00:10:31.308 the outcome of an evolutionary

NOTE Confidence: 0.88202142375

00:10:31.308 --> 00:10:33.299 process that's driven by mutation,

NOTE Confidence: 0.88202142375

 $00{:}10{:}33.300 \dashrightarrow 00{:}10{:}34.515$ consequent genetic variation

NOTE Confidence: 0.88202142375

 $00:10:34.515 \longrightarrow 00:10:36.135$ created by that mutation,

NOTE Confidence: 0.88202142375

 $00:10:36.140 \longrightarrow 00:10:37.900$ and natural selection for

NOTE Confidence: 0.88202142375

 $00{:}10{:}37.900 \dashrightarrow 00{:}10{:}39.660$ the more oncogenic variants.

NOTE Confidence: 0.88202142375

00:10:39.660 --> 00:10:42.250 This is from Peter Knowles

NOTE Confidence: 0.88202142375

 $00:10:42.250 \longrightarrow 00:10:43.012$ 1976 science article,

00:10:43.012 --> 00:10:44.790 a very well known article where he

NOTE Confidence: 0.88202142375

00:10:44.837 --> 00:10:46.289 just went through the idea that,

NOTE Confidence: 0.88202142375

00:10:46.290 --> 00:10:47.430 you know, it's an evolutionary.

NOTE Confidence: 0.88202142375

00:10:47.430 --> 00:10:50.086 Process that actually produces

NOTE Confidence: 0.88202142375

 $00:10:50.086 \longrightarrow 00:10:53.406$ malignancies and in this depiction

NOTE Confidence: 0.88202142375

00:10:53.406 --> 00:10:56.760 you can see a cellular lineages

NOTE Confidence: 0.88202142375

 $00:10:56.760 \longrightarrow 00:10:59.340$ differentiating and dividing.

NOTE Confidence: 0.88202142375

 $00:10:59.340 \longrightarrow 00:11:01.332$ You see a lot of lineages that are

NOTE Confidence: 0.88202142375

 $00:11:01.332 \longrightarrow 00:11:03.247$ hashed out here meaning they go

NOTE Confidence: 0.88202142375

 $00{:}11{:}03.247 \dashrightarrow 00{:}11{:}04.937$ extinct and that's the selective

NOTE Confidence: 0.88202142375

 $00:11:04.937 \longrightarrow 00:11:06.060$ process in operation.

NOTE Confidence: 0.88202142375

 $00{:}11{:}06.060 \dashrightarrow 00{:}11{:}07.775$ You know most of our our cells

NOTE Confidence: 0.88202142375

 $00{:}11{:}07.775 \dashrightarrow 00{:}11{:}10.101$ are all dying at the same rate as

NOTE Confidence: 0.88202142375

 $00:11:10.101 \longrightarrow 00:11:11.631$ we're as they're dividing typically

NOTE Confidence: 0.88202142375

 $00:11:11.696 \longrightarrow 00:11:12.696$ as in as an adult.

 $00:11:12.700 \longrightarrow 00:11:15.139$ So there's a lot of death going on we

NOTE Confidence: 0.88202142375

 $00:11:15.139 \longrightarrow 00:11:17.436$ don't usually emphasize that but but.

NOTE Confidence: 0.88202142375

00:11:17.440 --> 00:11:19.184 So that death may be going on and

NOTE Confidence: 0.88202142375

 $00:11:19.184 \longrightarrow 00:11:20.786$ what happens is that at some point

NOTE Confidence: 0.88202142375

 $00:11:20.786 \longrightarrow 00:11:22.204$ you get lineages that are reproducing

NOTE Confidence: 0.88202142375

 $00:11:22.204 \longrightarrow 00:11:23.989$ a lot more than they are dying.

NOTE Confidence: 0.88202142375

 $00:11:23.990 \longrightarrow 00:11:25.367$ And those ones,

NOTE Confidence: 0.88202142375

 $00:11:25.367 \longrightarrow 00:11:28.121$ in the case that they cause

NOTE Confidence: 0.88202142375

 $00{:}11{:}28.121 \dashrightarrow 00{:}11{:}30.155$ difficulties for your life are

NOTE Confidence: 0.88202142375

00:11:30.155 --> 00:11:32.280 usually referred to as malignancies,

NOTE Confidence: 0.88202142375

 $00:11:32.280 \longrightarrow 00:11:33.960$ especially if they can then

NOTE Confidence: 0.88202142375

 $00:11:33.960 \longrightarrow 00:11:35.304$ migrate to other locations.

NOTE Confidence: 0.88202142375

 $00:11:35.310 \longrightarrow 00:11:36.582$ And this.

NOTE Confidence: 0.88202142375

 $00{:}11{:}36.582 \dashrightarrow 00{:}11{:}39.573$ So these later evolved lineages are

NOTE Confidence: 0.88202142375

 $00:11:39.573 \longrightarrow 00:11:41.739$ usually the product of a series

NOTE Confidence: 0.88202142375

 $00:11:41.739 \longrightarrow 00:11:44.082$ of mutations that come along

00:11:44.082 --> 00:11:45.990 during this evolutionary process

NOTE Confidence: 0.88202142375

 $00{:}11{:}45.990 \dashrightarrow 00{:}11{:}48.190$ and what's happening with those.

NOTE Confidence: 0.88202142375

 $00:11:48.190 \longrightarrow 00:11:51.070$ Patience is they're actually enabling the

NOTE Confidence: 0.88202142375

00:11:51.070 --> 00:11:53.290 cells to survive and proliferate better,

NOTE Confidence: 0.88202142375

 $00:11:53.290 \longrightarrow 00:11:55.180$ so they're selected as the terminology

NOTE Confidence: 0.88202142375

 $00:11:55.232 \longrightarrow 00:11:56.627$ we use in evolutionary biology,

NOTE Confidence: 0.88202142375

 $00:11:56.630 \longrightarrow 00:11:59.138$ and they persist.

NOTE Confidence: 0.88202142375

 $00:11:59.140 \longrightarrow 00:12:02.236$ And that arising of those mutations

NOTE Confidence: 0.88202142375

 $00:12:02.236 \longrightarrow 00:12:04.300$ within individual cells within

NOTE Confidence: 0.88202142375

 $00{:}12{:}04.386 \dashrightarrow 00{:}12{:}06.605$ cancer lineages is what we need to

NOTE Confidence: 0.88202142375

00:12:06.605 --> 00:12:07.650 sort of understand because there's

NOTE Confidence: 0.88202142375

00:12:07.694 --> 00:12:08.799 two processes going on here.

NOTE Confidence: 0.88202142375

 $00:12:08.800 \longrightarrow 00:12:10.630$ One is the appearance of these

NOTE Confidence: 0.88202142375

 $00:12:10.630 \longrightarrow 00:12:12.620$ mutations and then there's the amount

NOTE Confidence: 0.88202142375

 $00:12:12.620 \longrightarrow 00:12:14.410$ that they actually increase the

 $00:12:14.410 \longrightarrow 00:12:16.240$ survival and replication of the cells.

NOTE Confidence: 0.88202142375

 $00:12:16.240 \longrightarrow 00:12:18.700$ So to quantify cancer effect size,

NOTE Confidence: 0.88202142375

 $00:12:18.700 \longrightarrow 00:12:20.404$ which is what I typically call

NOTE Confidence: 0.88202142375

 $00:12:20.404 \longrightarrow 00:12:21.540$ this the effect on,

NOTE Confidence: 0.88202142375

00:12:21.540 --> 00:12:22.316 you know,

NOTE Confidence: 0.88202142375

00:12:22.316 --> 00:12:25.032 on cells of actually leading to cancer,

NOTE Confidence: 0.88202142375

00:12:25.040 --> 00:12:27.320 which in evolutionary biology we

NOTE Confidence: 0.88202142375

 $00:12:27.320 \longrightarrow 00:12:29.600$ just call a selection coefficient.

NOTE Confidence: 0.88202142375

 $00:12:29.600 \longrightarrow 00:12:31.472$ We need to understand what the

NOTE Confidence: 0.88202142375

00:12:31.472 --> 00:12:32.720 prevalence in a population,

NOTE Confidence: 0.88202142375

 $00{:}12{:}32.720 \mathrel{--}{>} 00{:}12{:}34.442$ patient population is of a tumor

NOTE Confidence: 0.88202142375

 $00:12:34.442 \longrightarrow 00:12:36.420$ and we need to deconvolve that

NOTE Confidence: 0.88202142375

 $00:12:36.420 \longrightarrow 00:12:38.340$ prevalence into two factors because

NOTE Confidence: 0.88202142375

 $00:12:38.340 \longrightarrow 00:12:40.531$ when we see a certain mutation

NOTE Confidence: 0.88202142375

00:12:40.531 --> 00:12:42.792 very commonly in a kind of cancer,

NOTE Confidence: 0.88202142375

 $00:12:42.800 \longrightarrow 00:12:44.380$ that doesn't mean it's causing

 $00:12:44.380 \longrightarrow 00:12:45.960$ a lot of the cancer.

NOTE Confidence: 0.88202142375

 $00{:}12{:}45.960 \dashrightarrow 00{:}12{:}47.479$ It may just be that the mutation

NOTE Confidence: 0.88202142375

00:12:47.479 --> 00:12:49.324 rate is very high and we've seen

NOTE Confidence: 0.88202142375

 $00:12:49.324 \longrightarrow 00:12:50.749$ that very frequently in instances

NOTE Confidence: 0.88202142375

 $00:12:50.749 \longrightarrow 00:12:52.418$ where we have genes that are very

NOTE Confidence: 0.88202142375

00:12:52.418 --> 00:12:53.860 large or have very high mutation

NOTE Confidence: 0.88202142375

 $00:12:53.860 \longrightarrow 00:12:55.235$ rates that show up frequently

NOTE Confidence: 0.88202142375

 $00:12:55.235 \longrightarrow 00:12:56.430$ when we sequence tumors,

NOTE Confidence: 0.88202142375

 $00:12:56.430 \longrightarrow 00:12:58.985$ but are not significant causes of cancer.

NOTE Confidence: 0.88202142375

 $00:12:58.990 \longrightarrow 00:13:00.726$ And so we really need to understand,

NOTE Confidence: 0.88202142375

00:13:00.730 --> 00:13:01.182 you know,

NOTE Confidence: 0.88202142375

 $00:13:01.182 \longrightarrow 00:13:02.312$ which ones are actually contributing

NOTE Confidence: 0.88202142375

00:13:02.312 --> 00:13:03.492 cancer and which ones are

NOTE Confidence: 0.88202142375

00:13:03.492 --> 00:13:04.412 just typically contributing to

NOTE Confidence: 0.88202142375

 $00:13:04.412 \longrightarrow 00:13:05.332$ prevalence because of an

 $00:13:05.371 \longrightarrow 00:13:06.268$ underlying mutation rate.

NOTE Confidence: 0.765286207826087

00:13:06.270 --> 00:13:08.629 So to quantify the cancer effective size,

NOTE Confidence: 0.765286207826087

 $00:13:08.630 \longrightarrow 00:13:10.510$ we have to do a fairly straightforward thing,

NOTE Confidence: 0.765286207826087

 $00:13:10.510 \longrightarrow 00:13:11.630$ which is take that prevalence,

NOTE Confidence: 0.765286207826087

 $00:13:11.630 \longrightarrow 00:13:13.304$ how frequent we see them in

NOTE Confidence: 0.765286207826087

00:13:13.304 --> 00:13:14.806 patients and deconvolve it into

NOTE Confidence: 0.765286207826087

 $00:13:14.806 \longrightarrow 00:13:16.130$ the baseline mutation rate.

NOTE Confidence: 0.765286207826087

 $00:13:16.130 \longrightarrow 00:13:18.345$ How frequently the mutations are

NOTE Confidence: 0.765286207826087

 $00:13:18.345 \longrightarrow 00:13:21.025$ occurring in the lineage and into

NOTE Confidence: 0.765286207826087

 $00:13:21.025 \longrightarrow 00:13:23.335$ the degree of selection for that

NOTE Confidence: 0.765286207826087

 $00{:}13{:}23.335 \dashrightarrow 00{:}13{:}25.659$ mutation in the cancer lineage.

NOTE Confidence: 0.765286207826087

 $00:13:25.660 \longrightarrow 00:13:27.660$ And if we can differentiate those two things,

NOTE Confidence: 0.765286207826087

 $00:13:27.660 \longrightarrow 00:13:29.214$ then we can better understand how

NOTE Confidence: 0.765286207826087

 $00:13:29.214 \longrightarrow 00:13:31.126$ much is because how much is that

NOTE Confidence: 0.765286207826087

 $00:13:31.126 \longrightarrow 00:13:32.770$ mutation there is because of the

NOTE Confidence: 0.765286207826087

 $00:13:32.770 \longrightarrow 00:13:34.307$ underlying mutations that are happening

00:13:34.307 --> 00:13:36.125 and across your whole genome that

NOTE Confidence: 0.765286207826087

 $00:13:36.130 \longrightarrow 00:13:37.455$ aren't necessarily relevant and how

NOTE Confidence: 0.765286207826087

00:13:37.455 --> 00:13:39.204 much is due to those individual

NOTE Confidence: 0.765286207826087

 $00:13:39.204 \longrightarrow 00:13:40.684$ mutations actually increasing the

NOTE Confidence: 0.765286207826087

 $00:13:40.684 \longrightarrow 00:13:42.820$ proliferation and survival of the cell.

NOTE Confidence: 0.765286207826087

 $00{:}13{:}42.820 \dashrightarrow 00{:}13{:}44.738$ So here's just a schematic of that.

NOTE Confidence: 0.765286207826087

 $00:13:44.740 \longrightarrow 00:13:48.010$ This is just basic evolutionary biology.

NOTE Confidence: 0.765286207826087

 $00:13:48.010 \longrightarrow 00:13:49.874$ one-on-one mutation creates variation

NOTE Confidence: 0.765286207826087

 $00{:}13{:}49.874 \dashrightarrow 00{:}13{:}52.204$ symbolized by the different shades

NOTE Confidence: 0.765286207826087

 $00:13:52.204 \longrightarrow 00:13:54.650$ of Gray there unfavorable mutations

NOTE Confidence: 0.765286207826087

 $00:13:54.650 \longrightarrow 00:13:56.087$ are selected against.

NOTE Confidence: 0.765286207826087

00:13:56.090 --> 00:13:57.978 Reproduction and mutation occur,

NOTE Confidence: 0.765286207826087

 $00{:}13{:}57.978 \dashrightarrow 00{:}14{:}00.810$ and the favorable mutations are more

NOTE Confidence: 0.765286207826087

00:14:00.880 --> 00:14:03.070 likely to survive and reproduce,

NOTE Confidence: 0.765286207826087

 $00:14:03.070 \longrightarrow 00:14:05.494$ and the point of this is that it

 $00:14:05.494 \longrightarrow 00:14:07.835$ both the mutation rate and the

NOTE Confidence: 0.765286207826087

00:14:07.835 --> 00:14:09.905 extent to which they contribute

NOTE Confidence: 0.765286207826087

 $00:14:09.905 \longrightarrow 00:14:13.420$ to survival and reproduction.

NOTE Confidence: 0.765286207826087

 $00:14:13.420 \longrightarrow 00:14:16.028$ Contribute to what you see at as an

NOTE Confidence: 0.765286207826087

 $00:14:16.028 \longrightarrow 00:14:19.249$ end product of the process of cellular

NOTE Confidence: 0.765286207826087

 $00:14:19.249 \longrightarrow 00:14:22.489$ differentiation, especially into cancers.

NOTE Confidence: 0.765286207826087 00:14:22.490 --> 00:14:22.848 All right. NOTE Confidence: 0.765286207826087

 $00:14:22.848 \longrightarrow 00:14:23.922$ So how do we figure out

NOTE Confidence: 0.765286207826087

 $00:14:23.922 \longrightarrow 00:14:24.850$ that baseline mutation rate?

NOTE Confidence: 0.765286207826087

00:14:24.850 --> 00:14:27.706 Well, it's already been done for me anyway.

NOTE Confidence: 0.765286207826087

00:14:27.710 --> 00:14:29.480 It was a lot of the work was already done,

NOTE Confidence: 0.765286207826087

 $00:14:29.480 \longrightarrow 00:14:32.570$ which is really great by by

NOTE Confidence: 0.765286207826087

 $00:14:32.570 \longrightarrow 00:14:34.630$ Lawrence and and others.

NOTE Confidence: 0.765286207826087

 $00:14:34.630 \longrightarrow 00:14:36.415$ This is a 2013 paper quite a

NOTE Confidence: 0.765286207826087

 $00:14:36.415 \longrightarrow 00:14:38.325$ while ago where they showed that

NOTE Confidence: 0.765286207826087

 $00:14:38.325 \longrightarrow 00:14:40.125$ mutation rate varies widely across

 $00:14:40.125 \longrightarrow 00:14:42.507$ the genome and correlates with DNA

NOTE Confidence: 0.765286207826087

 $00{:}14{:}42.507 \dashrightarrow 00{:}14{:}44.507$ replication time and expression level.

NOTE Confidence: 0.765286207826087

 $00:14:44.510 \longrightarrow 00:14:45.358$ So there's these covariates.

NOTE Confidence: 0.765286207826087

00:14:45.358 --> 00:14:47.037 I'm not going to go into a lot

NOTE Confidence: 0.765286207826087

 $00:14:47.037 \longrightarrow 00:14:47.757$ of detail about this.

NOTE Confidence: 0.765286207826087

 $00:14:47.760 \longrightarrow 00:14:49.585$ I've talked about this before

NOTE Confidence: 0.765286207826087

 $00:14:49.585 \longrightarrow 00:14:51.498$ with various audiences here, but.

NOTE Confidence: 0.765286207826087

 $00{:}14{:}51.498 \dashrightarrow 00{:}14{:}54.186$ That mutation rate varies and correlates

NOTE Confidence: 0.765286207826087

 $00{:}14{:}54.186 \dashrightarrow 00{:}14{:}56.450$ with DNA replication time and

NOTE Confidence: 0.765286207826087

 $00:14:56.450 \longrightarrow 00:14:58.272$ expression level with heterochromatin marks.

NOTE Confidence: 0.765286207826087

 $00:14:58.272 \longrightarrow 00:15:00.942$ A bunch of other correlates that we can

NOTE Confidence: 0.765286207826087

 $00:15:00.942 \longrightarrow 00:15:02.697$ actually get about individual tumors.

NOTE Confidence: 0.765286207826087

 $00{:}15{:}02.700 \dashrightarrow 00{:}15{:}04.416$ Those allow us to ask questions

NOTE Confidence: 0.765286207826087

00:15:04.416 --> 00:15:06.430 about you know a given gene and

NOTE Confidence: 0.765286207826087

 $00:15:06.430 \longrightarrow 00:15:08.685$ whether or not it's got a very high

 $00:15:08.685 \longrightarrow 00:15:10.876$ mutation rate or a low mutation rate.

NOTE Confidence: 0.765286207826087

 $00{:}15{:}10.880 \to 00{:}15{:}13.169$ By using those correlates to help us

NOTE Confidence: 0.765286207826087

 $00:15:13.169 \longrightarrow 00:15:14.906$ predict that along with synonymous

NOTE Confidence: 0.765286207826087

 $00:15:14.906 \longrightarrow 00:15:17.321$ changes in the genome which we can

NOTE Confidence: 0.765286207826087

00:15:17.321 --> 00:15:19.565 presume don't have any effect on the

NOTE Confidence: 0.765286207826087

 $00:15:19.565 \longrightarrow 00:15:21.995$ proliferation and survival of of cells.

NOTE Confidence: 0.765286207826087

00:15:22.000 --> 00:15:22.996 So for instance,

NOTE Confidence: 0.765286207826087

 $00:15:22.996 \longrightarrow 00:15:23.660$ olfactory receptors,

NOTE Confidence: 0.765286207826087

 $00:15:23.660 \longrightarrow 00:15:25.612$ which early on were this bugaboo that would

NOTE Confidence: 0.765286207826087

00:15:25.612 --> 00:15:27.826 show up when we did these tumor sequencing,

NOTE Confidence: 0.765286207826087

 $00{:}15{:}27.830 \dashrightarrow 00{:}15{:}28.964$ happened to be in a part of

NOTE Confidence: 0.765286207826087

 $00:15:28.964 \longrightarrow 00:15:29.949$ the genome that gets a very,

NOTE Confidence: 0.765286207826087

 $00:15:29.950 \longrightarrow 00:15:31.326$ very high mutation rate.

NOTE Confidence: 0.765286207826087

 $00:15:31.326 \longrightarrow 00:15:32.702$ It's basically not expressed

NOTE Confidence: 0.765286207826087

 $00:15:32.702 \longrightarrow 00:15:34.020$ and not expressed.

NOTE Confidence: 0.765286207826087

00:15:34.020 --> 00:15:35.448 Parts of the genome don't have

 $00:15:35.448 \longrightarrow 00:15:36.162$ transcription enabled repair,

NOTE Confidence: 0.765286207826087 00:15:36.170 --> 00:15:36.548 etcetera. NOTE Confidence: 0.765286207826087

 $00{:}15{:}36.548 \dashrightarrow 00{:}15{:}38.816$ CSMD 3 is another example where

NOTE Confidence: 0.765286207826087

 $00:15:38.816 \longrightarrow 00:15:40.470$ there's very high levels,

NOTE Confidence: 0.765286207826087

 $00{:}15{:}40.470 \dashrightarrow 00{:}15{:}41.845$ high correlates and also very

NOTE Confidence: 0.765286207826087

 $00:15:41.845 \longrightarrow 00:15:42.670$ high mutation rate.

NOTE Confidence: 0.765286207826087

00:15:42.670 --> 00:15:43.985 And typically it's not considered

NOTE Confidence: 0.765286207826087

 $00{:}15{:}43.985 \dashrightarrow 00{:}15{:}46.100$ to be a driver even though you see

NOTE Confidence: 0.765286207826087

 $00{:}15{:}46.100 \dashrightarrow 00{:}15{:}47.836$ it a lot in cancer tumor sequencing

NOTE Confidence: 0.765286207826087

 $00:15:47.892 \longrightarrow 00:15:49.290$ and you can do regressions on

NOTE Confidence: 0.765286207826087

00:15:49.290 --> 00:15:51.142 this and then I'm just going to

NOTE Confidence: 0.765286207826087

00:15:51.142 --> 00:15:52.358 very quickly mention that.

NOTE Confidence: 0.841321872857143

 $00{:}15{:}52.360 \dashrightarrow 00{:}15{:}54.299$ This wonderful work was done by Lawrence,

NOTE Confidence: 0.841321872857143

 $00:15:54.300 \longrightarrow 00:15:56.575$ but typically that work was only applied

NOTE Confidence: 0.841321872857143

 $00:15:56.575 \longrightarrow 00:15:59.078$ to the question of whether or not

 $00:15:59.078 \longrightarrow 00:16:00.913$ genes were overburdened with mutations.

NOTE Confidence: 0.841321872857143

 $00:16:00.920 \longrightarrow 00:16:01.984$ So in other words, they got these

NOTE Confidence: 0.841321872857143

00:16:01.984 --> 00:16:02.909 mutation rates and they just said,

NOTE Confidence: 0.841321872857143

 $00:16:02.910 \longrightarrow 00:16:04.709$ well, is it more than we expect.

NOTE Confidence: 0.841321872857143

 $00:16:04.710 \longrightarrow 00:16:06.285$ And then they calculated P value for

NOTE Confidence: 0.841321872857143

00:16:06.285 --> 00:16:07.985 whether we should put this gene in the

NOTE Confidence: 0.841321872857143

00:16:07.985 --> 00:16:09.457 category of mutated or not and then

NOTE Confidence: 0.841321872857143

 $00:16:09.457 \longrightarrow 00:16:10.807$ they leave behind that mutation rate

NOTE Confidence: 0.841321872857143

 $00{:}16{:}10.807 \dashrightarrow 00{:}16{:}12.525$ and then just look at prevalence in

NOTE Confidence: 0.841321872857143

 $00:16:12.525 \longrightarrow 00:16:14.301$ most of the analysis that were done

NOTE Confidence: 0.841321872857143

 $00{:}16{:}14.301 \dashrightarrow 00{:}16{:}18.153$ from 2013 through 2018 or so. So.

NOTE Confidence: 0.841321872857143

 $00:16:18.153 \longrightarrow 00:16:20.204$ So typically that was sort of left

NOTE Confidence: 0.841321872857143

 $00:16:20.204 \longrightarrow 00:16:22.497$ behind at that point and that's what.

NOTE Confidence: 0.841321872857143

 $00:16:22.500 \longrightarrow 00:16:24.012$ Vincent Kintaro and I in 2018 sort

NOTE Confidence: 0.841321872857143

00:16:24.012 --> 00:16:25.488 of picked up on and said look,

NOTE Confidence: 0.841321872857143

 $00{:}16{:}25.490 \dashrightarrow 00{:}16{:}27.038$ this mutation rate is more important

00:16:27.038 --> 00:16:28.489 than for just calculating P values.

NOTE Confidence: 0.841321872857143

 $00:16:28.490 \longrightarrow 00:16:30.010$ It's actually important for

NOTE Confidence: 0.841321872857143

 $00:16:30.010 \longrightarrow 00:16:31.150$ calculating the effect.

NOTE Confidence: 0.841321872857143

00:16:31.150 --> 00:16:33.226 You know in the biostatisticians mind

NOTE Confidence: 0.841321872857143

 $00:16:33.226 \longrightarrow 00:16:36.050$ P value is sort of a secondary thing.

NOTE Confidence: 0.841321872857143

00:16:36.050 --> 00:16:37.472 First you calculate the effect of

NOTE Confidence: 0.841321872857143

 $00:16:37.472 \longrightarrow 00:16:38.870$ the thing you're looking at and

NOTE Confidence: 0.841321872857143

 $00{:}16{:}38.870 \dashrightarrow 00{:}16{:}40.094$ then you calculate that you see

NOTE Confidence: 0.841321872857143

 $00:16:40.094 \longrightarrow 00:16:41.568$ whether you should trust that effect.

NOTE Confidence: 0.841321872857143

 $00:16:41.570 \longrightarrow 00:16:43.766$ And so that's what Vincent Cantara

NOTE Confidence: 0.841321872857143

 $00:16:43.766 \longrightarrow 00:16:46.424$ and I did and just here's a sort of a

NOTE Confidence: 0.841321872857143

 $00:16:46.424 \longrightarrow 00:16:48.137$ brief introduction to how we do that

NOTE Confidence: 0.841321872857143

 $00{:}16{:}48.137 \dashrightarrow 00{:}16{:}49.382$ calculation by convolving the gene

NOTE Confidence: 0.841321872857143

 $00:16:49.382 \longrightarrow 00:16:51.370$ based rates from the silent sites and

NOTE Confidence: 0.841321872857143

 $00:16:51.370 \longrightarrow 00:16:53.020$ covariates with they're trying to die.

 $00:16:53.020 \longrightarrow 00:16:53.280$ Context.

NOTE Confidence: 0.841321872857143

 $00{:}16{:}53.280 \dashrightarrow 00{:}16{:}55.100$ So you can just go through tumor

NOTE Confidence: 0.841321872857143

 $00{:}16{:}55.157 \dashrightarrow 00{:}16{:}57.124$ sequence data and you can look at

NOTE Confidence: 0.841321872857143

00:16:57.124 --> 00:16:58.684 what the underlying mutation rate

NOTE Confidence: 0.841321872857143

 $00:16:58.684 \longrightarrow 00:17:00.658$ is using basically that Lawrence at

NOTE Confidence: 0.841321872857143

 $00:17:00.658 \longrightarrow 00:17:02.428$ all approach that I talked about

NOTE Confidence: 0.841321872857143

 $00:17:02.428 \longrightarrow 00:17:03.259$ with the covariance,

NOTE Confidence: 0.841321872857143

00:17:03.260 --> 00:17:04.420 you can sort of look at every gene

NOTE Confidence: 0.841321872857143

 $00:17:04.420 \longrightarrow 00:17:05.583$ in the genome and calculate what

NOTE Confidence: 0.841321872857143

 $00:17:05.583 \longrightarrow 00:17:06.415$ the mutation rate is.

NOTE Confidence: 0.841321872857143

 $00:17:06.420 \longrightarrow 00:17:08.060$ And this is just one of these plots

NOTE Confidence: 0.841321872857143

 $00:17:08.060 \longrightarrow 00:17:09.638$ that's just scatter plot on one axis

NOTE Confidence: 0.841321872857143

 $00{:}17{:}09.638 \dashrightarrow 00{:}17{:}11.240$ of what the different gene rates are.

NOTE Confidence: 0.841321872857143

 $00:17:11.240 \longrightarrow 00:17:13.074$ And you can see there's quite a

NOTE Confidence: 0.841321872857143

 $00:17:13.074 \longrightarrow 00:17:13.860$ wide range here.

NOTE Confidence: 0.841321872857143

 $00:17:13.860 \longrightarrow 00:17:15.729$ And I think that's the most important

00:17:15.729 --> 00:17:17.745 lesson of this little image is that

NOTE Confidence: 0.841321872857143

00:17:17.745 --> 00:17:19.200 the mutation rate varies quite

NOTE Confidence: 0.841321872857143

00:17:19.200 --> 00:17:21.314 extensively from gene to gene from 10

NOTE Confidence: 0.841321872857143

 $00:17:21.314 \longrightarrow 00:17:23.269$ to the minus two to 10 to the minus 4.

NOTE Confidence: 0.841321872857143

 $00:17:23.270 \longrightarrow 00:17:24.566$ In this particular instance,

NOTE Confidence: 0.841321872857143

 $00:17:24.566 \longrightarrow 00:17:26.510$ so that's two orders of magnitude

NOTE Confidence: 0.841321872857143

 $00:17:26.564 \longrightarrow 00:17:28.289$ rate variation in mutation rates.

NOTE Confidence: 0.841321872857143

 $00:17:28.290 \longrightarrow 00:17:29.450$ So when you see,

NOTE Confidence: 0.841321872857143

 $00{:}17{:}29.450 \dashrightarrow 00{:}17{:}31.564$ you know one gene mutated in a

NOTE Confidence: 0.841321872857143

00:17:31.564 --> 00:17:33.388 cancer tumor pop cohort at 100,

NOTE Confidence: 0.841321872857143 00:17:33.390 --> 00:17:33.904 you know, NOTE Confidence: 0.841321872857143

 $00:17:33.904 \longrightarrow 00:17:35.703$ 100 copies out of 1000 and another

NOTE Confidence: 0.841321872857143

 $00{:}17{:}35.703 \dashrightarrow 00{:}17{:}36.839$ at 10 out of 1000,

NOTE Confidence: 0.841321872857143

00:17:36.840 --> 00:17:38.544 that's only one order of magnitude

NOTE Confidence: 0.841321872857143

 $00:17:38.544 \longrightarrow 00:17:39.955$ difference in prevalence and you

 $00:17:39.955 \longrightarrow 00:17:41.305$ can explain that by just half

NOTE Confidence: 0.841321872857143

 $00{:}17{:}41.305 \dashrightarrow 00{:}17{:}42.619$ of this mutation rate diagram.

NOTE Confidence: 0.841321872857143

 $00:17:42.620 \longrightarrow 00:17:43.487$ In other words,

NOTE Confidence: 0.841321872857143

 $00:17:43.487 \longrightarrow 00:17:45.510$ mutation rate can explain a lot of

NOTE Confidence: 0.841321872857143

 $00:17:45.572 \longrightarrow 00:17:47.516$ the differences in how prevalent genes

NOTE Confidence: 0.841321872857143

 $00:17:47.516 \longrightarrow 00:17:50.259$ are when you look in a patient population.

NOTE Confidence: 0.841321872857143

 $00:17:50.260 \longrightarrow 00:17:52.065$ So you shouldn't take that

NOTE Confidence: 0.841321872857143

 $00{:}17{:}52.065 \dashrightarrow 00{:}17{:}53.509$ prevalence as an indicator.

NOTE Confidence: 0.841321872857143

 $00:17:53.510 \longrightarrow 00:17:55.772$ As a strong indicator of how

NOTE Confidence: 0.841321872857143

 $00:17:55.772 \longrightarrow 00:17:58.469$ important a gene is in the cancer,

NOTE Confidence: 0.841321872857143

 $00{:}17{:}58.470 {\:{\circ}{\circ}{\circ}}>00{:}18{:}01.098$ you really need to basically understand

NOTE Confidence: 0.841321872857143

 $00{:}18{:}01.098 \to 00{:}18{:}03.429$ this underlying mutation rate as well.

NOTE Confidence: 0.841321872857143

 $00:18:03.430 \longrightarrow 00:18:06.027$ And so then you can take different

NOTE Confidence: 0.841321872857143

 $00{:}18{:}06.027 \dashrightarrow 00{:}18{:}08.739$ genes that are on that that diagram

NOTE Confidence: 0.841321872857143

 $00:18:08.740 \longrightarrow 00:18:11.008$ and you can look at each individual

NOTE Confidence: 0.841321872857143

00:18:11.008 --> 00:18:13.518 tumor and you can map out what

 $00:18:13.518 \longrightarrow 00:18:15.353$ the trinucleotide rate rates are.

NOTE Confidence: 0.817349678

 $00:18:15.360 \longrightarrow 00:18:16.340$ So. So this rate is,

NOTE Confidence: 0.817349678

 $00:18:16.340 \longrightarrow 00:18:18.300$ the rate above is just the rate at

NOTE Confidence: 0.817349678

 $00:18:18.300 \longrightarrow 00:18:20.239$ which the gene itself gets mutated.

NOTE Confidence: 0.817349678

 $00:18:20.240 \longrightarrow 00:18:22.600$ But if we want to look at every given site,

NOTE Confidence: 0.817349678

 $00:18:22.600 \longrightarrow 00:18:24.814$ the important thing is that the

NOTE Confidence: 0.817349678

 $00:18:24.814 \longrightarrow 00:18:26.671$ different mutational processes that I

NOTE Confidence: 0.817349678

 $00:18:26.671 \longrightarrow 00:18:28.591$ mentioned earlier in this talk affect

NOTE Confidence: 0.817349678

 $00{:}18{:}28.591 \dashrightarrow 00{:}18{:}30.820$ different sites at different frequencies.

NOTE Confidence: 0.817349678

 $00{:}18{:}30.820 \dashrightarrow 00{:}18{:}31.700$ Have a question right there.

NOTE Confidence: 0.4676921275

 $00:18:33.790 \longrightarrow 00:18:36.910$ 2nd normalized for length.

NOTE Confidence: 0.4676921275

 $00:18:36.910 \longrightarrow 00:18:39.400$ Is the mutation rate itself?

NOTE Confidence: 0.4676921275

 $00:18:39.400 \longrightarrow 00:18:42.780$ In this case it is, yes.

NOTE Confidence: 0.4676921275

 $00:18:42.780 \longrightarrow 00:18:46.495$ So, so, so these different mutational

NOTE Confidence: 0.4676921275

00:18:46.495 --> 00:18:48.539 processes contribute to differently.

 $00:18:48.540 \longrightarrow 00:18:49.288$ So in this case,

NOTE Confidence: 0.4676921275

 $00{:}18{:}49.288 \dashrightarrow 00{:}18{:}50.223$ I'm looking at lung cancer,

NOTE Confidence: 0.4676921275

 $00:18:50.230 \longrightarrow 00:18:52.351$ which is why we can be carriers

NOTE Confidence: 0.4676921275

 $00:18:52.351 \longrightarrow 00:18:53.620$ and EGFR highlighted here.

NOTE Confidence: 0.4676921275

00:18:53.620 --> 00:18:54.704 And in lung cancer,

NOTE Confidence: 0.4676921275

00:18:54.704 --> 00:18:57.053 you get a lot of these RCA mutations

NOTE Confidence: 0.4676921275

00:18:57.053 --> 00:18:59.356 that are preceded by a T and

NOTE Confidence: 0.4676921275

 $00:18:59.356 \longrightarrow 00:19:01.647$ followed by an A and also ones that

NOTE Confidence: 0.4676921275

00:19:01.647 --> 00:19:03.057 are preceded by and followed by

NOTE Confidence: 0.4676921275

00:19:03.057 --> 00:19:05.080 an A&C and an A and an A and an A.

NOTE Confidence: 0.4676921275

 $00{:}19{:}05.080 \dashrightarrow 00{:}19{:}08.120$ So, so, so all of these bright red

NOTE Confidence: 0.4676921275

 $00{:}19{:}08.120 \dashrightarrow 00{:}19{:}09.568$ trinucleotide context get much

NOTE Confidence: 0.4676921275

 $00:19:09.568 \longrightarrow 00:19:11.378$ more mutation than other ones.

NOTE Confidence: 0.4676921275

00:19:11.380 --> 00:19:12.886 And again I just want to

NOTE Confidence: 0.4676921275

 $00:19:12.886 \longrightarrow 00:19:13.890$ emphasize that the coloration.

NOTE Confidence: 0.4676921275

 $00:19:13.890 \longrightarrow 00:19:16.473$ Here is scaled to how often we see it.

00:19:16.480 --> 00:19:18.838 And so you see almost an order of magnitude,

NOTE Confidence: 0.4676921275

 $00:19:18.840 \longrightarrow 00:19:19.670$ sometimes more,

NOTE Confidence: 0.4676921275

00:19:19.670 --> 00:19:22.160 with some cancer types of variation,

NOTE Confidence: 0.4676921275

 $00:19:22.160 \longrightarrow 00:19:25.110$ again in how frequently given

NOTE Confidence: 0.4676921275

 $00{:}19{:}25.110 \dashrightarrow 00{:}19{:}27.260$ sites get mutated over other sites.

NOTE Confidence: 0.4676921275

 $00:19:27.260 \longrightarrow 00:19:28.500$ So when you combine this

NOTE Confidence: 0.4676921275

 $00:19:28.500 \longrightarrow 00:19:30.120$ plus the gene by gene rates,

NOTE Confidence: 0.4676921275

 $00:19:30.120 \longrightarrow 00:19:32.437$ you're talking about 3 orders of magnitude,

NOTE Confidence: 0.4676921275

00:19:32.440 --> 00:19:34.336 maybe even four in some cases,

NOTE Confidence: 0.4676921275

 $00:19:34.340 \longrightarrow 00:19:35.570$ between a given site and

NOTE Confidence: 0.4676921275

 $00:19:35.570 \longrightarrow 00:19:36.800$ another site in the genome,

NOTE Confidence: 0.4676921275

 $00:19:36.800 \dashrightarrow 00:19:37.970$ and how frequently gets mutated.

NOTE Confidence: 0.4676921275

 $00{:}19{:}37.970 \dashrightarrow 00{:}19{:}39.386$ So this is a really important

NOTE Confidence: 0.4676921275

 $00:19:39.386 \longrightarrow 00:19:40.670$ factor to take into consideration

NOTE Confidence: 0.4676921275

 $00:19:40.670 \longrightarrow 00:19:42.095$ when wondering whether or not

 $00:19:42.095 \longrightarrow 00:19:43.960$ a given site is important for.

NOTE Confidence: 0.4676921275

 $00{:}19{:}43.960 \dashrightarrow 00{:}19{:}45.328$ Driving cancer and what you can

NOTE Confidence: 0.4676921275

 $00:19:45.328 \longrightarrow 00:19:47.047$ do is you can basically tape this

NOTE Confidence: 0.4676921275

00:19:47.047 --> 00:19:48.790 map and look at each gene and

NOTE Confidence: 0.4676921275

00:19:48.843 --> 00:19:49.859 here I've just look,

NOTE Confidence: 0.4676921275

 $00:19:49.860 \longrightarrow 00:19:52.028$ I'm looking at like an excerpt of a

NOTE Confidence: 0.4676921275

 $00:19:52.028 \longrightarrow 00:19:54.130$ tiny little part of the of the genome.

NOTE Confidence: 0.4676921275 00:19:54.130 --> 00:19:54.551 Sorry.

NOTE Confidence: 0.4676921275

 $00{:}19{:}54.551 \dashrightarrow 00{:}19{:}58.950$ This is this is site 850 to 870 and EGFR,

NOTE Confidence: 0.4676921275

 $00:19:58.950 \longrightarrow 00:20:02.560$ here's site 1 to 20 in K Ras and here's

NOTE Confidence: 0.4676921275

 $00:20:02.661 \longrightarrow 00:20:05.629$ site 30 to 50 in cutting and B1.

NOTE Confidence: 0.4676921275

00:20:05.630 --> 00:20:07.166 And I just want to mention that if

NOTE Confidence: 0.4676921275

 $00:20:07.166 \longrightarrow 00:20:08.693$ you you know you take these rates

NOTE Confidence: 0.4676921275

00:20:08.693 --> 00:20:10.425 and then you make sure that the

NOTE Confidence: 0.4676921275

 $00:20:10.425 \longrightarrow 00:20:11.885$ individual site rates are accommodated

NOTE Confidence: 0.4676921275

00:20:11.885 --> 00:20:14.990 by ensuring that you know TCA is much more.

00:20:14.990 --> 00:20:18.986 Frequent then see CCG chaining 2

NOTE Confidence: 0.4676921275

 $00:20:18.986 \longrightarrow 00:20:22.432$ and A and and do all of the math

NOTE Confidence: 0.4676921275

 $00:20:22.432 \longrightarrow 00:20:23.694$ that's very straightforward here

NOTE Confidence: 0.4676921275

00:20:23.694 --> 00:20:26.358 but a bit of a lot of accounting

NOTE Confidence: 0.4676921275

 $00{:}20{:}26.428 \dashrightarrow 00{:}20{:}28.618$ bioinformatics ally and then map it

NOTE Confidence: 0.4676921275

00:20:28.618 --> 00:20:30.666 through the the actual genetic code.

NOTE Confidence: 0.4676921275

00:20:30.666 --> 00:20:32.424 So you're looking at every single

NOTE Confidence: 0.4676921275

 $00:20:32.424 \longrightarrow 00:20:34.429$ site in that protein and saying well

NOTE Confidence: 0.4676921275

 $00:20:34.429 \longrightarrow 00:20:36.398$ how likely is this 850 histidine to

NOTE Confidence: 0.4676921275

 $00{:}20{:}36.398 \dashrightarrow 00{:}20{:}38.337$ change based on its three code on

NOTE Confidence: 0.4676921275

 $00:20:38.337 \longrightarrow 00:20:40.552$ sites into a tyrosine or a proline

NOTE Confidence: 0.4676921275

 $00{:}20{:}40.552 \dashrightarrow 00{:}20{:}42.420$ or a phenylalanine etcetera etcetera.

NOTE Confidence: 0.4676921275

 $00{:}20{:}42.420 \dashrightarrow 00{:}20{:}44.088$ And some sites of course some

NOTE Confidence: 0.4676921275

00:20:44.088 --> 00:20:45.578 changes of course can't really

NOTE Confidence: 0.4676921275

00:20:45.578 --> 00:20:46.878 happen through a single.

00:20:46.880 --> 00:20:47.744 Nucleotide mutation,

NOTE Confidence: 0.4676921275

 $00:20:47.744 \longrightarrow 00:20:50.098$ others can in multiple ways, etcetera.

NOTE Confidence: 0.4676921275

 $00:20:50.098 \longrightarrow 00:20:52.030$ So there's a lot of addition to add up here.

NOTE Confidence: 0.4676921275

00:20:52.030 --> 00:20:52.968 But once you add it all up,

NOTE Confidence: 0.4676921275

00:20:52.970 --> 00:20:55.034 this diagram tells you how likely

NOTE Confidence: 0.4676921275

00:20:55.034 --> 00:20:57.182 each different change is to happen

NOTE Confidence: 0.4676921275

 $00:20:57.182 \longrightarrow 00:20:58.250$ by neutral mutation.

NOTE Confidence: 0.4676921275

 $00:20:58.250 \longrightarrow 00:20:59.811$ That is when we just expect new

NOTE Confidence: 0.4676921275

 $00{:}20{:}59.811 \dashrightarrow 00{:}21{:}01.355$ mutations to be sprayed on there

NOTE Confidence: 0.4676921275

 $00:21:01.355 \longrightarrow 00:21:03.005$ and have no difference in the

NOTE Confidence: 0.4676921275

 $00:21:03.005 \longrightarrow 00:21:03.950$ replication and survival.

NOTE Confidence: 0.4676921275

 $00:21:03.950 \longrightarrow 00:21:06.094$ So then we get this diagram of how

NOTE Confidence: 0.4676921275

 $00:21:06.094 \longrightarrow 00:21:08.176$ much each amino acid position would

NOTE Confidence: 0.4676921275

 $00{:}21{:}08.176 \dashrightarrow 00{:}21{:}10.402$ be expected to be mutation mutated,

NOTE Confidence: 0.4676921275

 $00:21:10.410 \longrightarrow 00:21:12.096$ and then we can compare that

NOTE Confidence: 0.4676921275

 $00:21:12.096 \longrightarrow 00:21:13.220$ to what's actually observed.

00:21:18.480 --> 00:21:21.774 Um, what's actually observed is much,

NOTE Confidence: 0.700787762

00:21:21.774 --> 00:21:23.658 much more rarified set of mutations

NOTE Confidence: 0.700787762

00:21:23.658 --> 00:21:25.480 than what you actually expect

NOTE Confidence: 0.700787762

 $00:21:25.480 \longrightarrow 00:21:27.116$ based on neutral evolution.

NOTE Confidence: 0.700787762

 $00:21:27.120 \longrightarrow 00:21:28.618$ And that's because when we sample tumors,

NOTE Confidence: 0.700787762

 $00:21:28.620 \longrightarrow 00:21:30.504$ we're sampling tumors that have been

NOTE Confidence: 0.700787762

00:21:30.504 --> 00:21:32.160 under selection for very specific

NOTE Confidence: 0.700787762

 $00{:}21{:}32.160 {\:{\circ}{\circ}{\circ}}>00{:}21{:}34.200$ mutations and because right here I've

NOTE Confidence: 0.700787762

 $00{:}21{:}34.200 \dashrightarrow 00{:}21{:}36.582$ selected sites that actually do have an

NOTE Confidence: 0.700787762

 $00{:}21{:}36.582 \rightarrow 00{:}21{:}38.212$ effect on proliferation and survival.

NOTE Confidence: 0.700787762

 $00:21:38.220 \longrightarrow 00:21:42.060$ So on the top EGFR 858,

NOTE Confidence: 0.700787762

 $00:21:42.060 \longrightarrow 00:21:45.020$ Lucine is a very well known mutational site.

NOTE Confidence: 0.700787762

 $00:21:45.020 \longrightarrow 00:21:47.700$ The KSG 12 is also a very well known one.

NOTE Confidence: 0.700787762

 $00:21:47.700 \longrightarrow 00:21:48.864$ And then this.

NOTE Confidence: 0.700787762

00:21:48.864 --> 00:21:50.316 Part of continuing 1B1,

 $00:21:50.316 \longrightarrow 00:21:52.604$ it's a domain that is known to be

NOTE Confidence: 0.700787762

 $00{:}21{:}52.604 \dashrightarrow 00{:}21{:}54.380$ on cogenic when it gets mutated slightly

NOTE Confidence: 0.700787762

 $00:21:54.380 \longrightarrow 00:21:55.990$ lower level in terms of the others.

NOTE Confidence: 0.700787762

 $00:21:55.990 \longrightarrow 00:21:58.958$ But the whole region across here is sort

NOTE Confidence: 0.700787762

 $00:21:58.958 \longrightarrow 00:22:02.356$ of known to be important to to oncogenesis.

NOTE Confidence: 0.700787762

 $00{:}22{:}02.360 \dashrightarrow 00{:}22{:}04.336$ And So what you can basically do is

NOTE Confidence: 0.700787762

 $00:22:04.336 \longrightarrow 00:22:06.338$ take the prevalence that we see and and

NOTE Confidence: 0.700787762

 $00:22:06.338 \longrightarrow 00:22:08.997$ this is in a very crude terms but and

NOTE Confidence: 0.700787762

 $00{:}22{:}08.997 \dashrightarrow 00{:}22{:}10.994$ there's some corrections that are involved,

NOTE Confidence: 0.700787762

00:22:10.994 --> 00:22:13.906 I'm not going to go into but essentially

NOTE Confidence: 0.700787762

 $00:22:13.906 \longrightarrow 00:22:15.851$ divide the expectations the observed

NOTE Confidence: 0.700787762

 $00:22:15.851 \longrightarrow 00:22:18.760$ here by the expected block on the same.

NOTE Confidence: 0.700787762

 $00:22:18.760 \longrightarrow 00:22:20.821$ On the same plot on the left and that

NOTE Confidence: 0.700787762

 $00{:}22{:}20.821 \dashrightarrow 00{:}22{:}22.979$ gives you a metric for the cancer factor.

NOTE Confidence: 0.700787762

 $00:22:22.980 \longrightarrow 00:22:25.200$ How strongly that that site

NOTE Confidence: 0.700787762

 $00:22:25.200 \longrightarrow 00:22:26.976$ is mutated that sorry,

 $00:22:26.980 \longrightarrow 00:22:29.305$ how strongly that site is

NOTE Confidence: 0.700787762

 $00:22:29.305 \longrightarrow 00:22:31.630$ selected once it is mutated.

NOTE Confidence: 0.700787762

00:22:31.630 --> 00:22:33.742 And as I said these are well known

NOTE Confidence: 0.700787762

 $00:22:33.742 \longrightarrow 00:22:35.870$ sites in these particular cancers.

NOTE Confidence: 0.700787762

 $00:22:35.870 \longrightarrow 00:22:37.542$ And if you do that across all the

NOTE Confidence: 0.700787762

 $00:22:37.542 \longrightarrow 00:22:38.816$ different sites that you can look at

NOTE Confidence: 0.700787762

 $00:22:38.816 \longrightarrow 00:22:40.323$ what you see is a is a distribution

NOTE Confidence: 0.700787762

 $00:22:40.323 \longrightarrow 00:22:41.842$ that looks like this where on the

NOTE Confidence: 0.700787762

 $00:22:41.850 \longrightarrow 00:22:44.769$ X axis is the cancer effect size.

NOTE Confidence: 0.700787762

 $00:22:44.770 \longrightarrow 00:22:47.042$ It ranges from 10 to the zero to 10 to the

NOTE Confidence: 0.700787762

 $00:22:47.042 \longrightarrow 00:22:49.186$ 6th maybe even a little bit more typically.

NOTE Confidence: 0.700787762

 $00:22:49.190 \longrightarrow 00:22:50.350$ And why is that?

NOTE Confidence: 0.700787762 00:22:50.350 --> 00:22:50.640 Why,

NOTE Confidence: 0.700787762

 $00:22:50.640 \longrightarrow 00:22:52.570$ what does this range mean?

NOTE Confidence: 0.700787762

 $00:22:52.570 \longrightarrow 00:22:54.145$ The range is what it is because

00:22:54.145 --> 00:22:55.566 that has it's it's complicated and

NOTE Confidence: 0.700787762

 $00{:}22{:}55.566 \dashrightarrow 00{:}22{:}57.763$ I don't want to go into a lot of

NOTE Confidence: 0.700787762

 $00:22:57.763 \longrightarrow 00:22:58.823$ detail but population genetically

NOTE Confidence: 0.700787762

 $00:22:58.823 \longrightarrow 00:23:00.715$ it has to do with the population.

NOTE Confidence: 0.700787762

 $00:23:00.715 \longrightarrow 00:23:01.815$ Size of the cancer,

NOTE Confidence: 0.700787762

 $00:23:01.820 \longrightarrow 00:23:03.024$ the reproductive population size.

NOTE Confidence: 0.700787762

 $00:23:03.024 \longrightarrow 00:23:04.830$ How many cells in the cancer

NOTE Confidence: 0.700787762

00:23:04.884 --> 00:23:06.099 could possibly reproduce?

NOTE Confidence: 0.700787762

 $00{:}23{:}06.100 \dashrightarrow 00{:}23{:}07.234$ I'm not going to go into more

NOTE Confidence: 0.700787762

 $00:23:07.234 \longrightarrow 00:23:07.720$ saying about that,

NOTE Confidence: 0.700787762

 $00{:}23{:}07.720 \dashrightarrow 00{:}23{:}09.904$ but that's why it exists across

NOTE Confidence: 0.700787762

 $00:23:09.904 \longrightarrow 00:23:10.996$ this wide range.

NOTE Confidence: 0.700787762

 $00:23:11.000 \longrightarrow 00:23:12.808$ The density here is just I'm just going

NOTE Confidence: 0.700787762

 $00{:}23{:}12.808 \dashrightarrow 00{:}23{:}14.711$ to density a plot across cancer effect

NOTE Confidence: 0.700787762

 $00:23:14.711 \longrightarrow 00:23:16.111$ size of these different mutations.

NOTE Confidence: 0.700787762

 $00:23:16.120 \longrightarrow 00:23:18.272$ So most of the mutations lie at this

 $00{:}23{:}18.272 \dashrightarrow 00{:}23{:}20.667$ very low range where it's not even

NOTE Confidence: 0.700787762

 $00{:}23{:}20.667 {\:\dashrightarrow\:} 00{:}23{:}22.911$ clear necessarily if they're under any

NOTE Confidence: 0.700787762

 $00:23:22.911 \longrightarrow 00:23:25.836$ selection below say 10 to the four or so.

NOTE Confidence: 0.700787762

 $00:23:25.840 \longrightarrow 00:23:28.080$ And in blue I show you the

NOTE Confidence: 0.700787762

 $00:23:28.080 \longrightarrow 00:23:29.862$ synonymous mutations and in red

NOTE Confidence: 0.700787762

 $00:23:29.862 \longrightarrow 00:23:31.370$ the non synonymous mutations.

NOTE Confidence: 0.700787762

 $00:23:31.370 \longrightarrow 00:23:33.200$ So there's just a slight,

NOTE Confidence: 0.700787762

 $00:23:33.200 \longrightarrow 00:23:36.164$ a slight bias over the synonymous

NOTE Confidence: 0.700787762

00:23:36.164 --> 00:23:37.646 mutations of NONSYNONYMOUS

NOTE Confidence: 0.700787762

00:23:37.646 --> 00:23:39.339 mutations to be oncogenic.

NOTE Confidence: 0.700787762

 $00{:}23{:}39.340 \dashrightarrow 00{:}23{:}40.460$ But the really important mutations

NOTE Confidence: 0.700787762

 $00:23:40.460 \longrightarrow 00:23:42.039$ are all out on this tail here,

NOTE Confidence: 0.700787762

 $00{:}23{:}42.040 \dashrightarrow 00{:}23{:}43.656$ and I've just shown 2 here for reference.

NOTE Confidence: 0.700787762

 $00:23:43.660 \longrightarrow 00:23:46.019$ Here's a P53 mutation that's quite common.

NOTE Confidence: 0.700787762

 $00:23:46.020 \longrightarrow 00:23:48.228$ Here's an NF2L2 mutation is quite

 $00:23:48.228 \longrightarrow 00:23:50.740$ common in lung squamous cell carcinoma.

NOTE Confidence: 0.700787762

 $00:23:50.740 \longrightarrow 00:23:52.144$ So these tail mutations are the

NOTE Confidence: 0.700787762

 $00:23:52.144 \longrightarrow 00:23:53.080$ ones that are important.

NOTE Confidence: 0.700787762

 $00:23:53.080 \longrightarrow 00:23:54.235$ And this harks back to

NOTE Confidence: 0.700787762

00:23:54.235 --> 00:23:55.390 what I was saying earlier

NOTE Confidence: 0.817316937692308

 $00:23:55.442 \longrightarrow 00:23:57.332$ when we say, oh, lots of mutations

NOTE Confidence: 0.817316937692308

 $00:23:57.332 \longrightarrow 00:23:59.300$ are happening in the genome because

NOTE Confidence: 0.817316937692308

00:23:59.363 --> 00:24:01.379 of UV light or something like that.

NOTE Confidence: 0.817316937692308

 $00{:}24{:}01.380 \dashrightarrow 00{:}24{:}02.765$ If they're not these key

NOTE Confidence: 0.817316937692308

 $00:24:02.765 \longrightarrow 00:24:04.490$ mutations out here on the tail,

NOTE Confidence: 0.817316937692308

 $00:24:04.490 \longrightarrow 00:24:06.266$ they're not contributing much to cancer.

NOTE Confidence: 0.817316937692308

 $00{:}24{:}06.270 \dashrightarrow 00{:}24{:}08.942$ So we really need that component to be

NOTE Confidence: 0.817316937692308

 $00{:}24{:}08.942 \dashrightarrow 00{:}24{:}11.690$ included if we want to ask the question

NOTE Confidence: 0.817316937692308

 $00:24:11.690 \longrightarrow 00:24:14.238$ what is causing cancer in an individual.

NOTE Confidence: 0.817316937692308

 $00:24:14.240 \longrightarrow 00:24:16.740$ Tumor in a digital patient.

NOTE Confidence: 0.817316937692308

 $00:24:16.740 \longrightarrow 00:24:17.750$ You can do this diagram

 $00:24:17.750 \longrightarrow 00:24:18.760$ not just for lung cancer,

NOTE Confidence: 0.817316937692308

 $00:24:18.760 \longrightarrow 00:24:20.896$ but for lots of different cancers,

NOTE Confidence: 0.817316937692308

 $00{:}24{:}20.900 \dashrightarrow 00{:}24{:}22.964$ and we see very much the same pattern.

NOTE Confidence: 0.834948496

00:24:31.370 --> 00:24:33.474 OK. Now just to provide you a little

NOTE Confidence: 0.834948496

 $00:24:33.474 \longrightarrow 00:24:35.682$ bit of perhaps validation that this

NOTE Confidence: 0.834948496

00:24:35.682 --> 00:24:38.106 cancer effect you know is meaningful,

NOTE Confidence: 0.834948496

 $00:24:38.110 \longrightarrow 00:24:39.445$ probably many of you are

NOTE Confidence: 0.834948496

 $00:24:39.445 \longrightarrow 00:24:40.513$ familiar with GLENVAR variants,

NOTE Confidence: 0.834948496

 $00:24:40.520 \longrightarrow 00:24:43.663$ variants that have been attributed over

NOTE Confidence: 0.834948496

 $00{:}24{:}43.663 \dashrightarrow 00{:}24{:}46.928$ time with some clinical significance.

NOTE Confidence: 0.834948496

 $00:24:46.930 \longrightarrow 00:24:48.690$ And these by the way these are Clint

NOTE Confidence: 0.834948496

 $00:24:48.690 \longrightarrow 00:24:50.400$ Barbarians that were attributed significance,

NOTE Confidence: 0.834948496

 $00:24:50.400 \longrightarrow 00:24:52.865$ not potential, not ones that

NOTE Confidence: 0.834948496

 $00{:}24{:}52.865 \rightarrow 00{:}24{:}54.344$ weren't attributed significance.

NOTE Confidence: 0.834948496

00:24:54.350 --> 00:24:57.650 And on the X axis we've sort of divided them,

 $00:24:57.650 \longrightarrow 00:24:58.810$ those Clint Barbarians up and

NOTE Confidence: 0.834948496

00:24:58.810 --> 00:24:59.970 some categories I'll talk about,

NOTE Confidence: 0.834948496

 $00:24:59.970 \longrightarrow 00:25:01.290$ but on the Y axis.

NOTE Confidence: 0.834948496

 $00:25:01.290 \longrightarrow 00:25:03.040$ Is the scale selection coefficient,

NOTE Confidence: 0.834948496

 $00:25:03.040 \longrightarrow 00:25:04.784$ and generally there's basically

NOTE Confidence: 0.834948496

 $00:25:04.784 \longrightarrow 00:25:05.656$ 2 comparisons.

NOTE Confidence: 0.834948496

 $00:25:05.660 \longrightarrow 00:25:06.818$ I really want to emphasize here.

NOTE Confidence: 0.834948496

 $00:25:06.820 \longrightarrow 00:25:09.207$ If we look at glenvar single nucleotide

NOTE Confidence: 0.834948496

 $00:25:09.207 \longrightarrow 00:25:11.131$ variants that are recurrent within

NOTE Confidence: 0.834948496

00:25:11.131 --> 00:25:13.795 cancer type and compare it to other

NOTE Confidence: 0.834948496

 $00:25:13.795 \longrightarrow 00:25:15.255$ single nucleotide variants that

NOTE Confidence: 0.834948496

 $00{:}25{:}15.255 \dashrightarrow 00{:}25{:}17.477$ are recurrent within cancer type,

NOTE Confidence: 0.834948496

 $00:25:17.480 \longrightarrow 00:25:19.676$ we see that the GLENVAR variants have a much,

NOTE Confidence: 0.834948496

 $00{:}25{:}19.680 \dashrightarrow 00{:}25{:}21.325$ much higher distribution of selection

NOTE Confidence: 0.834948496

 $00:25:21.325 \longrightarrow 00:25:23.700$ coefficient than the ones that are other SNV.

NOTE Confidence: 0.834948496

 $00:25:23.700 \longrightarrow 00:25:26.100$ So in other words, there's,

00:25:26.100 --> 00:25:27.768 you know this literally,

NOTE Confidence: 0.834948496

 $00{:}25{:}27.768 \dashrightarrow 00{:}25{:}29.853$ this is saying that Glenvar

NOTE Confidence: 0.834948496

 $00:25:29.853 \longrightarrow 00:25:31.300$ predicts cancer effect.

NOTE Confidence: 0.834948496

 $00:25:31.300 \longrightarrow 00:25:32.889$ But the opposite is true and I'll

NOTE Confidence: 0.834948496

 $00:25:32.889 \longrightarrow 00:25:34.488$ show you that in the next slide.

NOTE Confidence: 0.834948496

 $00:25:34.490 \longrightarrow 00:25:37.050$ And then we can also compare Glenvar STD's

NOTE Confidence: 0.834948496

 $00:25:37.050 \longrightarrow 00:25:39.896$ that are a single hit within a cancer type.

NOTE Confidence: 0.834948496

 $00:25:39.900 \longrightarrow 00:25:42.879$ That is ones that we only see once when

NOTE Confidence: 0.834948496

 $00{:}25{:}42.879 \dashrightarrow 00{:}25{:}45.550$ they're clean bar single nukite variance

NOTE Confidence: 0.834948496

 $00{:}25{:}45.550 \dashrightarrow 00{:}25{:}48.385$ versus other SNB's that are single hit.

NOTE Confidence: 0.834948496

 $00{:}25{:}48.390 \dashrightarrow 00{:}25{:}50.679$ And you can see that the cancer

NOTE Confidence: 0.834948496

 $00{:}25{:}50.679 \dashrightarrow 00{:}25{:}53.361$ affect size of those ones that are

NOTE Confidence: 0.834948496

 $00{:}25{:}53.361 \dashrightarrow 00{:}25{:}55.797$ you know known oncogenic are believed

NOTE Confidence: 0.834948496

 $00:25:55.868 \longrightarrow 00:25:58.342$ oncogenic variants have a much higher

NOTE Confidence: 0.834948496

 $00:25:58.342 \longrightarrow 00:26:00.130$ cancer effect than the ones that

 $00:26:00.190 \longrightarrow 00:26:02.116$ are not believed to be oncogenic.

NOTE Confidence: 0.834948496

 $00:26:02.120 \longrightarrow 00:26:04.353$ And this is a highly significant from

NOTE Confidence: 0.834948496

 $00{:}26{:}04.353 \dashrightarrow 00{:}26{:}06.698$ a a statistical science point of view.

NOTE Confidence: 0.834948496

00:26:06.700 --> 00:26:08.392 By the way, this is work of Jeffrey Mandel,

NOTE Confidence: 0.834948496

00:26:08.400 --> 00:26:09.597 who's sitting over here in the audience,

NOTE Confidence: 0.834948496

 $00:26:09.600 \longrightarrow 00:26:12.066$ a grad student in my lab.

NOTE Confidence: 0.834948496

 $00:26:12.070 \longrightarrow 00:26:16.888$ And so that should be reassuring.

NOTE Confidence: 0.834948496

 $00:26:16.890 \longrightarrow 00:26:17.278$ Furthermore,

NOTE Confidence: 0.834948496

 $00{:}26{:}17.278 \dashrightarrow 00{:}26{:}20.382$ if you take the mean or the top

NOTE Confidence: 0.834948496

00:26:20.382 --> 00:26:22.830 cancer effect of a given variant,

NOTE Confidence: 0.834948496

 $00:26:22.830 \longrightarrow 00:26:25.065$ they're much stronger predictions of

NOTE Confidence: 0.834948496

00:26:25.065 --> 00:26:27.790 glenvar status than the SIFT score,

NOTE Confidence: 0.834948496

 $00:26:27.790 \longrightarrow 00:26:29.550$ the Polyphen 2 score,

NOTE Confidence: 0.834948496

 $00:26:29.550 \longrightarrow 00:26:30.870$ or variant prevalence.

NOTE Confidence: 0.834948496

 $00:26:30.870 \longrightarrow 00:26:32.436$ Any of these measures that are

NOTE Confidence: 0.834948496

 $00:26:32.436 \longrightarrow 00:26:34.284$ typically used to try to say whether

 $00:26:34.284 \longrightarrow 00:26:35.790$ a variant is important or not.

NOTE Confidence: 0.834948496

 $00:26:35.790 \longrightarrow 00:26:36.158$ So really,

NOTE Confidence: 0.834948496

 $00:26:36.158 \longrightarrow 00:26:37.630$ you should be using cancer effects if you

NOTE Confidence: 0.834948496

 $00:26:37.671 \longrightarrow 00:26:39.087$ want to know whether variance important.

NOTE Confidence: 0.75101091

00:26:41.280 --> 00:26:42.785 This is also work by Jeff Mandell.

NOTE Confidence: 0.755946486363636

00:26:45.150 --> 00:26:47.537 OK, so hopefully it persuaded you that

NOTE Confidence: 0.755946486363636

00:26:47.537 --> 00:26:49.641 cancer effect is a measure that you

NOTE Confidence: 0.755946486363636

 $00{:}26{:}49.641 \dashrightarrow 00{:}26{:}51.543$ should be thoughtful about and use

NOTE Confidence: 0.755946486363636

 $00:26:51.543 \longrightarrow 00:26:53.826$ and and in the research you're doing.

NOTE Confidence: 0.755946486363636

 $00{:}26{:}53.830 \dashrightarrow 00{:}26{:}55.430$ But what we wanted to get to from

NOTE Confidence: 0.755946486363636

 $00{:}26{:}55.430 \dashrightarrow 00{:}26{:}56.624$ the beginning of this talk was

NOTE Confidence: 0.755946486363636

 $00:26:56.624 \longrightarrow 00:26:58.169$ the extent to which each of those

NOTE Confidence: 0.755946486363636

 $00{:}26{:}58.169 \to 00{:}26{:}59.669$ processes contribute to tumorigenesis.

NOTE Confidence: 0.755946486363636

 $00{:}26{:}59.670 \dashrightarrow 00{:}27{:}01.278$ So if you'll if you'll at least walk

NOTE Confidence: 0.755946486363636

 $00:27:01.278 \longrightarrow 00:27:03.237$ with me on the idea that cancer affect

 $00:27:03.237 \longrightarrow 00:27:05.294$ quantifies the degree to which a given

NOTE Confidence: 0.755946486363636

 $00:27:05.294 \longrightarrow 00:27:06.626$ variant contributes to tumorigenesis,

NOTE Confidence: 0.755946486363636

 $00:27:06.630 \longrightarrow 00:27:09.276$ then that apply that gives us the

NOTE Confidence: 0.755946486363636

 $00:27:09.276 \longrightarrow 00:27:11.145$ key to finish that association.

NOTE Confidence: 0.755946486363636

00:27:11.145 --> 00:27:13.718 I said. So we know, you know,

NOTE Confidence: 0.755946486363636

00:27:13.718 --> 00:27:15.140 from Alexandra's work.

NOTE Confidence: 0.755946486363636

 $00:27:15.140 \longrightarrow 00:27:16.525$ The degree to which, no, sorry.

NOTE Confidence: 0.755946486363636

00:27:16.525 --> 00:27:18.910 We know from this work the degree to which

NOTE Confidence: 0.755946486363636

 $00:27:18.965 \longrightarrow 00:27:21.125$ mutations contribute to the increased

NOTE Confidence: 0.755946486363636

 $00:27:21.125 \longrightarrow 00:27:22.853$ cellular perforation and survival.

NOTE Confidence: 0.755946486363636

 $00:27:22.860 \longrightarrow 00:27:25.636$ And we know from Alexandra's work and others,

NOTE Confidence: 0.755946486363636

00:27:25.640 --> 00:27:28.358 some strain in Xanal and others

NOTE Confidence: 0.755946486363636

 $00:27:28.360 \longrightarrow 00:27:30.980$ what the contribution of various

NOTE Confidence: 0.755946486363636

 $00:27:30.980 \longrightarrow 00:27:32.932$ mutagenic processes toward creating

NOTE Confidence: 0.755946486363636

 $00:27:32.932 \longrightarrow 00:27:34.396$ those mutations are.

NOTE Confidence: 0.755946486363636

 $00:27:34.400 \longrightarrow 00:27:36.296$ And so by putting those two things together,

 $00:27:36.300 \longrightarrow 00:27:38.832$ we can understand the relationship between

NOTE Confidence: 0.755946486363636

 $00{:}27{:}38.832 \dashrightarrow 00{:}27{:}40.520$ these increased cellular proliferation

NOTE Confidence: 0.755946486363636

 $00{:}27{:}40.573 \dashrightarrow 00{:}27{:}42.883$ and survival and the actual processes

NOTE Confidence: 0.755946486363636

 $00:27:42.883 \longrightarrow 00:27:44.423$ underlying these mutational effects.

NOTE Confidence: 0.830300483333333

00:27:46.450 --> 00:27:49.058 So just going back again to Alexandra's work,

NOTE Confidence: 0.830300483333333

 $00:27:49.058 \longrightarrow 00:27:50.678$ we know each signature contributes

NOTE Confidence: 0.830300483333333

00:27:50.678 --> 00:27:51.939 differentially to mutation counts

NOTE Confidence: 0.830300483333333

 $00{:}27{:}51.939 \dashrightarrow 00{:}27{:}53.169$ observed in each cancer type.

NOTE Confidence: 0.830300483333333

 $00{:}27{:}53.170 \dashrightarrow 00{:}27{:}55.447$ I showed this slide earlier and

NOTE Confidence: 0.830300483333333

00:27:55.447 --> 00:27:56.932 here's here's the slide where

NOTE Confidence: 0.830300483333333

 $00:27:56.932 \longrightarrow 00:27:58.979$ you can you can sort of like.

NOTE Confidence: 0.830300483333333

00:27:58.980 --> 00:28:01.260 Fade out for a moment if you want,

NOTE Confidence: 0.830300483333333

 $00{:}28{:}01.260 \dashrightarrow 00{:}28{:}02.436$ and then come back in a moment.

NOTE Confidence: 0.830300483333333

 $00:28:02.440 \longrightarrow 00:28:03.289$ It's only saying.

NOTE Confidence: 0.830300483333333

 $00:28:03.289 \longrightarrow 00:28:05.615$ What it's it's this is I'm going to

00:28:05.615 --> 00:28:07.313 narrate through for those of you

NOTE Confidence: 0.830300483333333

 $00:28:07.313 \longrightarrow 00:28:09.439$ who are really interested how we

NOTE Confidence: 0.830300483333333

 $00:28:09.439 \longrightarrow 00:28:11.059$ actually calculate this process.

NOTE Confidence: 0.830300483333333

00:28:11.060 --> 00:28:12.632 But if if you've understood everything

NOTE Confidence: 0.830300483333333

00:28:12.632 --> 00:28:14.308 before, there's nothing new here.

NOTE Confidence: 0.830300483333333

00:28:14.308 --> 00:28:16.797 It's just the bookkeeping of how we

NOTE Confidence: 0.830300483333333

 $00:28:16.797 \longrightarrow 00:28:18.657$ calculate this process and the the

NOTE Confidence: 0.830300483333333

00:28:18.657 --> 00:28:21.450 point is that forget for each for each.

NOTE Confidence: 0.830300483333333

 $00:28:21.450 \longrightarrow 00:28:23.230$ A source of mutation.

NOTE Confidence: 0.830300483333333

 $00:28:23.230 \longrightarrow 00:28:26.068$ Here's deamination with age apobec tobacco,

NOTE Confidence: 0.830300483333333

00:28:26.070 --> 00:28:28.008 and then unload clock like signature,

NOTE Confidence: 0.830300483333333

 $00:28:28.010 \longrightarrow 00:28:29.924$ which were the four sources that

NOTE Confidence: 0.830300483333333

 $00:28:29.924 \longrightarrow 00:28:32.016$ came out of the deconvolution for

NOTE Confidence: 0.830300483333333

00:28:32.016 --> 00:28:34.620 a particular tumor in the TCA data

NOTE Confidence: 0.830300483333333

 $00:28:34.620 \longrightarrow 00:28:37.220$ set that turned out to be useful

NOTE Confidence: 0.830300483333333

 $00:28:37.220 \longrightarrow 00:28:38.656$ for illustration of this.

 $00:28:38.660 \longrightarrow 00:28:40.420$ For each of those processes,

NOTE Confidence: 0.830300483333333

 $00:28:40.420 \longrightarrow 00:28:42.382$ there's a weight of mutation that

NOTE Confidence: 0.830300483333333

00:28:42.382 --> 00:28:44.460 they contribute to given trying time

NOTE Confidence: 0.830300483333333

 $00:28:44.460 \longrightarrow 00:28:46.578$ nucleotides that are listed down here.

NOTE Confidence: 0.830300483333333

 $00:28:46.580 \longrightarrow 00:28:48.650$ So deamination with age really

NOTE Confidence: 0.830300483333333

 $00:28:48.650 \longrightarrow 00:28:51.819$ focuses on these AC to TG mutations.

NOTE Confidence: 0.830300483333333

 $00:28:51.820 \longrightarrow 00:28:53.500$ That's what they cause for the most part.

NOTE Confidence: 0.830300483333333

 $00:28:53.500 \longrightarrow 00:28:55.131$ But then there's a few other ones

NOTE Confidence: 0.830300483333333

00:28:55.131 --> 00:28:56.629 here that are quite frequent.

NOTE Confidence: 0.830300483333333

 $00{:}28{:}56.630 \dashrightarrow 00{:}29{:}01.058$ Apobec really focuses on TCA or

NOTE Confidence: 0.830300483333333

00:29:01.060 --> 00:29:04.980 TCC or TCG or TCT changing to T,

NOTE Confidence: 0.830300483333333

 $00{:}29{:}04.980 \dashrightarrow 00{:}29{:}07.740$ and to bacco has a broader distribution

NOTE Confidence: 0.830300483333333

 $00:29:07.740 \longrightarrow 00:29:08.660$ of neurogenic.

NOTE Confidence: 0.830300483333333

 $00:29:08.660 \longrightarrow 00:29:10.886$ In fact and this unknown clock

NOTE Confidence: 0.830300483333333

 $00:29:10.886 \longrightarrow 00:29:11.628$ like signature,

 $00:29:11.630 \longrightarrow 00:29:14.978$ there's another aging signature has a

NOTE Confidence: 0.830300483333333

 $00:29:14.978 \longrightarrow 00:29:17.910$ generally quite broad distribution as well.

NOTE Confidence: 0.830300483333333

 $00{:}29{:}17.910 \dashrightarrow 00{:}29{:}21.795$ So we deconvolve that tumor into these

NOTE Confidence: 0.830300483333333

 $00:29:21.795 \longrightarrow 00:29:23.376$ different signatures to understand

NOTE Confidence: 0.830300483333333

 $00:29:23.376 \longrightarrow 00:29:25.428$ how much each one is contributing.

NOTE Confidence: 0.830300483333333

 $00{:}29{:}25.430 \to 00{:}29{:}27.302$ That gives us a signature weight

NOTE Confidence: 0.830300483333333

 $00:29:27.302 \longrightarrow 00:29:28.550$ for every signature here.

NOTE Confidence: 0.830300483333333

00:29:28.550 --> 00:29:29.870 And I'm just emphasizing that,

NOTE Confidence: 0.830300483333333

00:29:29.870 --> 00:29:30.658 you know,

NOTE Confidence: 0.830300483333333

 $00:29:30.658 \longrightarrow 00:29:33.810$ we can do lots of uncertainty analysis by.

NOTE Confidence: 0.830300483333333

 $00:29:33.810 \longrightarrow 00:29:34.734$ Bootstrapping the signature,

NOTE Confidence: 0.830300483333333

 $00:29:34.734 \longrightarrow 00:29:35.042$ deconvolution,

NOTE Confidence: 0.830300483333333

 $00:29:35.042 \longrightarrow 00:29:37.175$ that's what all these dots are many

NOTE Confidence: 0.830300483333333

00:29:37.175 --> 00:29:38.385 bootstraps on and given tumor,

NOTE Confidence: 0.830300483333333

00:29:38.390 --> 00:29:39.896 just saying how much of that

NOTE Confidence: 0.830300483333333

00:29:39.896 --> 00:29:41.270 signature do we really believe

 $00:29:41.270 \longrightarrow 00:29:42.870$ is contributing to that cancer.

NOTE Confidence: 0.830300483333333

 $00:29:42.870 \longrightarrow 00:29:45.086$ So we do do that and then you

NOTE Confidence: 0.830300483333333

 $00{:}29{:}45.086 \dashrightarrow 00{:}29{:}46.570$ can also and then in addition to

NOTE Confidence: 0.830300483333333

00:29:46.617 --> 00:29:47.981 understanding how much signature

NOTE Confidence: 0.830300483333333

 $00:29:47.981 \longrightarrow 00:29:49.345$ is contributed to cancer,

NOTE Confidence: 0.830300483333333

 $00:29:49.350 \longrightarrow 00:29:51.168$ we look at the probability that

NOTE Confidence: 0.830300483333333

00:29:51.168 --> 00:29:52.870 each source created each variant.

NOTE Confidence: 0.830300483333333

 $00{:}29{:}52.870 \dashrightarrow 00{:}29{:}54.130$ And we know that because we know

NOTE Confidence: 0.830300483333333

 $00:29:54.130 \longrightarrow 00:29:55.404$ what the sources are and we can

NOTE Confidence: 0.830300483333333

 $00:29:55.404 \longrightarrow 00:29:56.442$ just look at the relative height

NOTE Confidence: 0.830300483333333

 $00:29:56.480 \longrightarrow 00:29:57.740$ of these bars essentially to give

NOTE Confidence: 0.830300483333333

 $00:29:57.740 \longrightarrow 00:29:59.320$ us the probability that each source

NOTE Confidence: 0.830300483333333

 $00{:}29{:}59.320 \dashrightarrow 00{:}30{:}01.540$ contributed to a given variant and

NOTE Confidence: 0.830300483333333

 $00:30:01.540 \longrightarrow 00:30:04.339$ then that probability comes out of that.

NOTE Confidence: 0.830300483333333

 $00:30:04.340 \longrightarrow 00:30:06.265$ Just by multiplying those together

00:30:06.265 --> 00:30:08.236 essentially and that gives US4P53

NOTE Confidence: 0.830300483333333

 $00:30:08.236 \longrightarrow 00:30:10.792$ here KF5 and this odorant receptor

NOTE Confidence: 0.830300483333333

 $00:30:10.792 \longrightarrow 00:30:12.740$ which doesn't have much cancer effect,

NOTE Confidence: 0.830300483333333

 $00:30:12.740 \longrightarrow 00:30:14.750$ what the probably each source

NOTE Confidence: 0.830300483333333

 $00:30:14.750 \longrightarrow 00:30:16.760$ contributed to creating each variant.

NOTE Confidence: 0.830300483333333

 $00:30:16.760 \dashrightarrow 00:30:18.265$ And then we take that effect size

NOTE Confidence: 0.830300483333333

00:30:18.265 --> 00:30:19.778 that I just described to you,

NOTE Confidence: 0.830300483333333

00:30:19.780 --> 00:30:22.900 which is very high for this P53 variant,

NOTE Confidence: 0.830300483333333

00:30:22.900 --> 00:30:24.466 quite a bit lower for KF5,

NOTE Confidence: 0.830300483333333

 $00:30:24.470 \longrightarrow 00:30:26.498$ but still there and is basically

NOTE Confidence: 0.830300483333333

 $00{:}30{:}26.498 \dashrightarrow 00{:}30{:}28.413$ nonexistent for the odorant receptor

NOTE Confidence: 0.830300483333333

 $00:30:28.413 \longrightarrow 00:30:29.181$ mutation. So.

NOTE Confidence: 0.830300483333333

00:30:29.181 --> 00:30:31.008 So this is a really important variant,

NOTE Confidence: 0.830300483333333

 $00:30:31.010 \longrightarrow 00:30:32.354$ this is a less important variant

NOTE Confidence: 0.830300483333333

 $00:30:32.354 \longrightarrow 00:30:33.770$ and this is not important.

NOTE Confidence: 0.823364442333333

 $00:30:33.770 \longrightarrow 00:30:35.930$ Fall and then we can just sort of

 $00:30:35.930 \longrightarrow 00:30:37.848$ multiply through each variant by the

NOTE Confidence: 0.823364442333333

 $00:30:37.848 \longrightarrow 00:30:39.498$ probability that each source created

NOTE Confidence: 0.823364442333333

 $00:30:39.498 \longrightarrow 00:30:41.532$ that variant and that gives us this

NOTE Confidence: 0.823364442333333

 $00:30:41.532 \longrightarrow 00:30:43.420$ final thing which is the proportional

NOTE Confidence: 0.823364442333333

 $00:30:43.420 \longrightarrow 00:30:44.980$ mutation source effect size.

NOTE Confidence: 0.823364442333333

 $00:30:44.980 \longrightarrow 00:30:45.997$ That's a mouthful.

NOTE Confidence: 0.823364442333333

 $00:30:45.997 \longrightarrow 00:30:48.370$ But what we're just trying to say

NOTE Confidence: 0.823364442333333

 $00:30:48.440 \longrightarrow 00:30:50.748$ is how much of this given variant

NOTE Confidence: 0.823364442333333

 $00:30:50.748 \longrightarrow 00:30:53.418$ was caused by the particular

NOTE Confidence: 0.823364442333333

00:30:53.418 --> 00:30:55.540 mutational process and or sorry,

NOTE Confidence: 0.823364442333333

 $00:30:55.540 \longrightarrow 00:30:57.360$ how much of the selection for oncogenesis

NOTE Confidence: 0.823364442333333

 $00:30:57.360 \longrightarrow 00:30:59.276$ was caused by that particular process.

NOTE Confidence: 0.823364442333333

 $00{:}30{:}59.280 \dashrightarrow 00{:}31{:}03.004$ So the TP50 were bar the TP 53 bars.

NOTE Confidence: 0.823364442333333

 $00:31:03.004 \longrightarrow 00:31:05.021$ Are much higher than the ones in

NOTE Confidence: 0.823364442333333

00:31:05.021 --> 00:31:07.121 KF5 and are those are way higher

00:31:07.121 --> 00:31:08.928 than anything in order receptor

NOTE Confidence: 0.823364442333333

 $00:31:08.928 \longrightarrow 00:31:10.828$ because the odorant receptor in

NOTE Confidence: 0.823364442333333

00:31:10.828 --> 00:31:13.222 fact doesn't do anything for cancer.

NOTE Confidence: 0.823364442333333

 $00:31:13.222 \longrightarrow 00:31:16.130$ So the average then you can then

NOTE Confidence: 0.823364442333333

 $00:31:16.130 \longrightarrow 00:31:18.790$ you can look across all of those,

NOTE Confidence: 0.823364442333333

 $00:31:18.790 \longrightarrow 00:31:19.710$ all of the variants,

NOTE Confidence: 0.823364442333333

 $00:31:19.710 \longrightarrow 00:31:21.641$ not just these ones to look at what

NOTE Confidence: 0.823364442333333

 $00:31:21.641 \longrightarrow 00:31:22.886$ the average attributable effect size

NOTE Confidence: 0.823364442333333

 $00:31:22.886 \longrightarrow 00:31:25.273$ is in a given tumor and you get this

NOTE Confidence: 0.823364442333333

00:31:25.273 --> 00:31:27.100 distribution which says oh for this

NOTE Confidence: 0.823364442333333

00:31:27.100 --> 00:31:29.795 tumor you know most of the oncogenic

NOTE Confidence: 0.823364442333333

 $00{:}31{:}29.795 \dashrightarrow 00{:}31{:}32.598$ cause came from deamination with age.

NOTE Confidence: 0.823364442333333

 $00:31:32.600 \longrightarrow 00:31:35.348$ And for this tumor?

NOTE Confidence: 0.823364442333333

 $00:31:35.350 \longrightarrow 00:31:37.422$ You know the second most common process

NOTE Confidence: 0.823364442333333

 $00:31:37.422 \longrightarrow 00:31:39.589$ that was creating mutations that led to

NOTE Confidence: 0.823364442333333

 $00:31:39.589 \longrightarrow 00:31:41.425$ oncogenesis was this light Gray which

 $00:31:41.484 \longrightarrow 00:31:43.458$ is this unknown clock like SIEGENER 5.

NOTE Confidence: 0.823364442333333

 $00:31:43.460 \longrightarrow 00:31:43.752$ So.

NOTE Confidence: 0.823364442333333

 $00{:}31{:}43.752 \dashrightarrow 00{:}31{:}45.796$ So this is a largely aging driven

NOTE Confidence: 0.823364442333333

 $00:31:45.796 \longrightarrow 00:31:47.559$ tumor and there's a little bit

NOTE Confidence: 0.823364442333333

 $00:31:47.559 \longrightarrow 00:31:49.637$ of Apple back here and a little

NOTE Confidence: 0.823364442333333

 $00:31:49.637 \longrightarrow 00:31:51.760$ bit of tobacco smoke and and you

NOTE Confidence: 0.823364442333333

 $00:31:51.760 \longrightarrow 00:31:53.320$ can follow it through like that.

NOTE Confidence: 0.823364442333333

 $00:31:53.320 \longrightarrow 00:31:55.412$ So this is one example for a

NOTE Confidence: 0.823364442333333

 $00:31:55.412 \longrightarrow 00:31:56.828$ given tumor and then that result,

NOTE Confidence: 0.823364442333333

 $00:31:56.830 \longrightarrow 00:31:58.713$ you know it basically tells you what

NOTE Confidence: 0.823364442333333

 $00:31:58.713 \longrightarrow 00:32:00.702$ at least with the knowledge we have

NOTE Confidence: 0.823364442333333

 $00:32:00.702 \longrightarrow 00:32:02.750$ right now what the effect size by

NOTE Confidence: 0.823364442333333

00:32:02.750 --> 00:32:04.598 mutational source for this tumor was,

NOTE Confidence: 0.823364442333333

 $00:32:04.600 \longrightarrow 00:32:05.830$ this is a lung cancer tumor.

NOTE Confidence: 0.823364442333333 00:32:05.830 --> 00:32:07.438 By the way.

00:32:07.440 --> 00:32:10.392 Now you can look at this not just at,

NOTE Confidence: 0.823364442333333 00:32:10.400 --> 00:32:10.972 you know, NOTE Confidence: 0.823364442333333

 $00:32:10.972 \longrightarrow 00:32:12.688$ you can sort of understand that

NOTE Confidence: 0.823364442333333

 $00:32:12.688 \longrightarrow 00:32:13.999$ for a given site,

NOTE Confidence: 0.823364442333333

 $00:32:14.000 \longrightarrow 00:32:18.072$ but then you can also look at

NOTE Confidence: 0.823364442333333

 $00:32:18.072 \longrightarrow 00:32:20.689$ what a set of sites all look like.

NOTE Confidence: 0.823364442333333

 $00:32:20.690 \longrightarrow 00:32:22.420$ So this is just a diagram where we do that.

NOTE Confidence: 0.823364442333333 00:32:22.420 --> 00:32:22.744 Again, NOTE Confidence: 0.823364442333333

 $00:32:22.744 \longrightarrow 00:32:24.040$ a little bit complex,

NOTE Confidence: 0.823364442333333

 $00:32:24.040 \longrightarrow 00:32:25.980$ but hopefully this everyone can

NOTE Confidence: 0.823364442333333

 $00:32:25.980 \longrightarrow 00:32:27.532$ follow along directly with.

NOTE Confidence: 0.823364442333333

 $00:32:27.540 \longrightarrow 00:32:29.316$ If you look across the genome,

NOTE Confidence: 0.823364442333333

 $00:32:29.320 \longrightarrow 00:32:30.820$ there's an average mutational weight.

NOTE Confidence: 0.823364442333333

 $00:32:30.820 \longrightarrow 00:32:32.536$ So tobacco smoke is causing a

NOTE Confidence: 0.823364442333333

 $00:32:32.536 \longrightarrow 00:32:34.300$ certain number of the mutations,

NOTE Confidence: 0.823364442333333

 $00:32:34.300 \longrightarrow 00:32:35.530$ certain proportion of the mutations

 $00:32:35.530 \longrightarrow 00:32:37.120$ and then a number of others.

NOTE Confidence: 0.823364442333333

 $00:32:37.120 \longrightarrow 00:32:38.108$ And in these diagrams,

NOTE Confidence: 0.823364442333333

00:32:38.108 --> 00:32:39.909 I've sort of put the major mutagenic

NOTE Confidence: 0.823364442333333

 $00:32:39.909 \longrightarrow 00:32:41.743$ cause on the left and then stacked

NOTE Confidence: 0.823364442333333

 $00:32:41.743 \longrightarrow 00:32:43.636$ all the other causes on the right,

NOTE Confidence: 0.823364442333333

 $00:32:43.640 \longrightarrow 00:32:45.590$ just because it helps you really

NOTE Confidence: 0.823364442333333

 $00:32:45.590 \longrightarrow 00:32:46.890$ see the differential effect

NOTE Confidence: 0.823364442333333

00:32:46.948 --> 00:32:48.520 of these different processes.

NOTE Confidence: 0.823364442333333

 $00{:}32{:}48.520 \dashrightarrow 00{:}32{:}51.502$ So to bacco smoking is the major cause

NOTE Confidence: 0.823364442333333

 $00{:}32{:}51.502 \longrightarrow 00{:}32{:}55.532$ of of loads in general in terms of

NOTE Confidence: 0.823364442333333

 $00{:}32{:}55.532 \dashrightarrow 00{:}32{:}57.660$ the underlying genomic mutation.

NOTE Confidence: 0.823364442333333

00:32:57.660 --> 00:33:00.558 But if you look at from site to site,

NOTE Confidence: 0.823364442333333

 $00:33:00.560 \longrightarrow 00:33:02.756$ each site has a different probability

NOTE Confidence: 0.823364442333333

 $00:33:02.756 \dashrightarrow 00:33:05.199$ of being caused by to bacco smoke.

NOTE Confidence: 0.823364442333333 00:33:05.200 --> 00:33:06.660 So here's. NOTE Confidence: 0.823364442333333 00:33:06.660 --> 00:33:09.201 KSG 12C very, very,

NOTE Confidence: 0.823364442333333

00:33:09.201 --> 00:33:11.307 very strong caused by tobacco smoke,

NOTE Confidence: 0.823364442333333

00:33:11.310 --> 00:33:13.092 maybe that's not surprising it in

NOTE Confidence: 0.823364442333333

 $00:33:13.092 \longrightarrow 00:33:14.910$ lung cancer, we see that variant very,

NOTE Confidence: 0.823364442333333

 $00:33:14.910 \longrightarrow 00:33:15.826$ very frequently.

NOTE Confidence: 0.823364442333333

 $00:33:15.826 \longrightarrow 00:33:18.780$ We very rarely see care SG12C in

NOTE Confidence: 0.823364442333333

00:33:18.780 --> 00:33:20.430 other cancers like pancreatic cancer,

NOTE Confidence: 0.823364442333333

 $00{:}33{:}20.430 \dashrightarrow 00{:}33{:}21.890$ other K rosterman cancers.

NOTE Confidence: 0.823364442333333

 $00:33:21.890 \longrightarrow 00:33:23.350$ So why is that?

NOTE Confidence: 0.839534726

 $00:33:23.350 \longrightarrow 00:33:25.450$ Well, it's just because that site is

NOTE Confidence: 0.839534726

 $00:33:25.450 \longrightarrow 00:33:28.189$ hit a lot more in terms of mutations.

NOTE Confidence: 0.839534726

 $00:33:28.190 \longrightarrow 00:33:31.007$ It's not a doesn't appear to have anything to

NOTE Confidence: 0.839534726

 $00:33:31.007 \longrightarrow 00:33:34.012$ do from our calculations with its particular

NOTE Confidence: 0.839534726

 $00:33:34.012 \longrightarrow 00:33:36.810$ cancer effect relative to other variants.

NOTE Confidence: 0.839534726

00:33:36.810 --> 00:33:40.814 And, and in contrast, here's EGFR LA58R.

NOTE Confidence: 0.839534726

 $00{:}33{:}40.814 \dashrightarrow 00{:}33{:}42.998$ It's a long known fact that you

 $00:33:42.998 \longrightarrow 00:33:45.382$ rarely see those in individuals who

NOTE Confidence: 0.839534726

 $00:33:45.382 \longrightarrow 00:33:46.850$ are non-smokers, are smokers.

NOTE Confidence: 0.839534726

 $00:33:46.850 \longrightarrow 00:33:49.160$ You see that in non-smokers and the

NOTE Confidence: 0.839534726

 $00:33:49.160 \longrightarrow 00:33:51.357$ reason is it's not caused by smoking.

NOTE Confidence: 0.839534726

 $00:33:51.360 \longrightarrow 00:33:54.564$ So when you see a patient with these Fr

NOTE Confidence: 0.839534726

 $00{:}33{:}54.564 {\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}} 00{:}33{:}57.020$ mutation, they typically are not smoker.

NOTE Confidence: 0.839534726

 $00:33:57.020 \longrightarrow 00:33:59.708$ There's a lot more individuals coming

NOTE Confidence: 0.839534726

 $00:33:59.708 \longrightarrow 00:34:02.897$ in with EGFR who are not smokers then

NOTE Confidence: 0.839534726

00:34:02.897 --> 00:34:04.684 are smokers relatively speaking.

NOTE Confidence: 0.839534726

 $00:34:04.684 \longrightarrow 00:34:08.700$ So you can do this for lung adenocarcinoma.

NOTE Confidence: 0.839534726

 $00:34:08.700 \longrightarrow 00:34:10.513$ You can look at other variants of

NOTE Confidence: 0.839534726

 $00:34:10.513 \dashrightarrow 00:34:12.060$ course lung squamous cell carcinoma.

NOTE Confidence: 0.839534726

 $00:34:12.060 \longrightarrow 00:34:15.492$ Here you see PI3 kinase largely driven

NOTE Confidence: 0.839534726

 $00:34:15.492 \longrightarrow 00:34:18.053$ in lung squamous cell carcinoma by other

NOTE Confidence: 0.839534726

 $00:34:18.053 \longrightarrow 00:34:21.870$ effects, mostly apobec but in fact.

 $00:34:21.870 \longrightarrow 00:34:23.235$ Not at all driven by tobacco smoke.

NOTE Confidence: 0.839534726

 $00{:}34{:}23.240 \dashrightarrow 00{:}34{:}24.880$ Again, that's an empirical observation

NOTE Confidence: 0.839534726

00:34:24.880 --> 00:34:26.892 that people have noted many times

NOTE Confidence: 0.839534726

 $00:34:26.892 \longrightarrow 00:34:28.507$ that individuals with lung squamous

NOTE Confidence: 0.839534726

 $00{:}34{:}28.507 \dashrightarrow 00{:}34{:}30.475$ cell carcinoma who have PI3 kinase

NOTE Confidence: 0.839534726

 $00:34:30.475 \longrightarrow 00:34:32.353$ mutation are rarely are less frequently

NOTE Confidence: 0.839534726

 $00:34:32.353 \longrightarrow 00:34:34.408$ smokers than than other mutations.

NOTE Confidence: 0.839534726

00:34:34.408 --> 00:34:36.892 And P3 mutations, on the other hand,

NOTE Confidence: 0.839534726

 $00:34:36.892 \longrightarrow 00:34:37.418$ are diverse,

NOTE Confidence: 0.839534726

 $00:34:37.420 \longrightarrow 00:34:39.420$ some of them likely to be created by

NOTE Confidence: 0.839534726

 $00:34:39.420 \longrightarrow 00:34:42.300$ tobacco smoke, some of them less likely.

NOTE Confidence: 0.839534726

 $00:34:42.300 \longrightarrow 00:34:43.848$ OK, so we can look at this on an

NOTE Confidence: 0.839534726

 $00{:}34{:}43.848 \dashrightarrow 00{:}34{:}45.045$ individual basis and then we can

NOTE Confidence: 0.839534726

 $00:34:45.045 \longrightarrow 00:34:46.025$ look at some other cancers.

NOTE Confidence: 0.839534726

 $00:34:46.030 \longrightarrow 00:34:48.557$ So here's bladder cancer and cervical cancer.

NOTE Confidence: 0.839534726

 $00:34:48.560 \longrightarrow 00:34:51.400$ I just added these because.

 $00:34:51.400 \longrightarrow 00:34:53.584$ Maybe this is a little less well known,

NOTE Confidence: 0.839534726

 $00:34:53.590 \longrightarrow 00:34:55.982$ but a lot of the mutation in both

NOTE Confidence: 0.839534726

00:34:55.982 --> 00:34:57.568 bladder cancer and cervical cancer

NOTE Confidence: 0.839534726

 $00:34:57.568 \longrightarrow 00:34:59.710$ is is caused at least by the.

NOTE Confidence: 0.839534726

 $00{:}34{:}59.710 \dashrightarrow 00{:}35{:}01.734$ This deconvolution approach appears

NOTE Confidence: 0.839534726

 $00:35:01.734 \longrightarrow 00:35:05.055$ to be attributable to APOBEC mutation.

NOTE Confidence: 0.839534726

 $00:35:05.055 \longrightarrow 00:35:08.980$ Apobec is this apolipoprotein B.

NOTE Confidence: 0.839534726

 $00{:}35{:}08.980 \dashrightarrow 00{:}35{:}11.490$ Gene that enzy matically we know

NOTE Confidence: 0.839534726

 $00{:}35{:}11.490 \dashrightarrow 00{:}35{:}14.300$ mutates DNA and appears to be a

NOTE Confidence: 0.839534726

 $00:35:14.300 \longrightarrow 00:35:15.380$ viral defense protein.

NOTE Confidence: 0.839534726

 $00:35:15.380 \longrightarrow 00:35:17.666$ And what we see is that a lot of

NOTE Confidence: 0.839534726

 $00:35:17.666 \longrightarrow 00:35:19.762$ the mutagenic cause in the in

NOTE Confidence: 0.839534726

 $00{:}35{:}19.762 \dashrightarrow 00{:}35{:}22.100$ the genome is created by a pobec,

NOTE Confidence: 0.839534726

00:35:22.100 --> 00:35:24.067 some of it's by aging and bladder

NOTE Confidence: 0.839534726

 $00:35:24.067 \longrightarrow 00:35:25.340$ cancer and cervical cancer.

 $00:35:25.340 \longrightarrow 00:35:27.713$ There's a little bit of defective homologous

NOTE Confidence: 0.839534726

 $00:35:27.713 \dashrightarrow 00:35:29.920$ recombination as a source there as well.

NOTE Confidence: 0.839534726

00:35:29.920 --> 00:35:31.608 But as you can see for a number

NOTE Confidence: 0.839534726

 $00:35:31.608 \longrightarrow 00:35:32.620$ of these mutations,

NOTE Confidence: 0.839534726

00:35:32.620 --> 00:35:37.104 the some P3 mutations for FGFR 3 for KSG 12D,

NOTE Confidence: 0.839534726

00:35:37.104 --> 00:35:39.218 we see almost no cause from APOBEC.

NOTE Confidence: 0.839534726

 $00:35:39.220 \longrightarrow 00:35:39.940$ But on the other hand,

NOTE Confidence: 0.839534726

00:35:39.940 --> 00:35:42.250 this other FGFR 3 mutation very

NOTE Confidence: 0.839534726

 $00:35:42.250 \longrightarrow 00:35:44.630$ likely to be caused by apobec,

NOTE Confidence: 0.839534726

 $00:35:44.630 \longrightarrow 00:35:45.264$ PI3 kinase,

NOTE Confidence: 0.839534726

 $00:35:45.264 \longrightarrow 00:35:47.166$ again very likely to be caused

NOTE Confidence: 0.839534726

 $00:35:47.166 \longrightarrow 00:35:48.410$ by APOBEC mutation.

NOTE Confidence: 0.839534726

 $00:35:48.410 \longrightarrow 00:35:49.970$ Cervical cancer are the same thing.

NOTE Confidence: 0.839534726

 $00:35:49.970 \longrightarrow 00:35:50.368$ All right,

NOTE Confidence: 0.839534726

 $00:35:50.368 \longrightarrow 00:35:52.200$ so we can look at the interval variance here.

NOTE Confidence: 0.839534726

 $00:35:52.200 \longrightarrow 00:35:54.690$ Let's get back to the main theme

 $00:35:54.690 \longrightarrow 00:35:57.190$ that this talk hopefully is.

NOTE Confidence: 0.839534726

 $00:35:57.190 \longrightarrow 00:35:58.003$ Presenting to you,

NOTE Confidence: 0.839534726

 $00:35:58.003 \longrightarrow 00:36:00.201$ which is that once we understand for every

NOTE Confidence: 0.839534726

 $00:36:00.201 \longrightarrow 00:36:01.958$ one of these variants what the causes

NOTE Confidence: 0.839534726

00:36:01.958 --> 00:36:04.088 are and how much they're causing cancer,

NOTE Confidence: 0.839534726

 $00:36:04.090 \longrightarrow 00:36:06.478$ we can then look at tumor

NOTE Confidence: 0.839534726

 $00:36:06.478 \longrightarrow 00:36:08.070$ causation by tumor type.

NOTE Confidence: 0.839534726

00:36:08.070 --> 00:36:10.059 And this isn't the best way to contrast them,

NOTE Confidence: 0.839534726

 $00:36:10.060 \longrightarrow 00:36:11.242$ I'll show you another that maybe

NOTE Confidence: 0.839534726

 $00{:}36{:}11.242 \dashrightarrow 00{:}36{:}12.480$ contrast it a little bit better.

NOTE Confidence: 0.839534726

 $00:36:12.480 \longrightarrow 00:36:15.014$ But here we have all the different

NOTE Confidence: 0.839534726

 $00{:}36{:}15.014 \dashrightarrow 00{:}36{:}17.435$ signatures on the Y axis and all

NOTE Confidence: 0.839534726

 $00{:}36{:}17.435 \dashrightarrow 00{:}36{:}19.319$ the different cancers on the X

NOTE Confidence: 0.828217057666666

 $00:36:19.389 \longrightarrow 00:36:21.901$ axis and the red is the amount that

NOTE Confidence: 0.828217057666666

 $00:36:21.901 \longrightarrow 00:36:24.830$ the tumor type is caused by that

 $00:36:24.830 \longrightarrow 00:36:27.130$ particular signature and the Gray.

NOTE Confidence: 0.828217057666666

 $00{:}36{:}27.130 \dashrightarrow 00{:}36{:}29.392$ It is or black is, the amount that you

NOTE Confidence: 0.828217057666666

 $00:36:29.392 \longrightarrow 00:36:32.200$ see mutation for due to that signature.

NOTE Confidence: 0.828217057666666

00:36:32.200 --> 00:36:33.500 And there's some big differences,

NOTE Confidence: 0.828217057666666

 $00:36:33.500 \longrightarrow 00:36:36.461$ say in signature 5 here for thyroid

NOTE Confidence: 0.828217057666666

 $00:36:36.461 \longrightarrow 00:36:39.444$ cancer where you see an enormous amount

NOTE Confidence: 0.828217057666666

 $00:36:39.444 \longrightarrow 00:36:41.774$ of cause but much less mutation.

NOTE Confidence: 0.828217057666666

00:36:41.774 --> 00:36:44.780 But it's a little hard to read that dot plot.

NOTE Confidence: 0.828217057666666

 $00:36:44.780 \longrightarrow 00:36:46.820$ Down below we have just these

NOTE Confidence: 0.828217057666666

 $00:36:46.820 \longrightarrow 00:36:48.650$ bar plots showing the can't,

NOTE Confidence: 0.828217057666666

 $00:36:48.650 \longrightarrow 00:36:51.134$ the weight of mutation.

NOTE Confidence: 0.828217057666666

00:36:51.134 --> 00:36:53.550 How much? Mutation was caught,

NOTE Confidence: 0.828217057666666

 $00:36:53.550 \longrightarrow 00:36:56.648$ which of the mutation in the genome was

NOTE Confidence: 0.828217057666666

 $00:36:56.648 \longrightarrow 00:36:58.354$ caused by a given mutational process.

NOTE Confidence: 0.828217057666666

 $00:36:58.354 \longrightarrow 00:37:00.490$ And on the right the effects and these

NOTE Confidence: 0.828217057666666

 $00:37:00.540 \dashrightarrow 00:37:02.122$ may look pretty similar but let I'll

 $00:37:02.122 \longrightarrow 00:37:03.914$ show you the contrast that shows you

NOTE Confidence: 0.828217057666666

 $00:37:03.914 \dashrightarrow 00:37:05.516$ how they're different in a moment.

NOTE Confidence: 0.828217057666666

 $00:37:05.520 \longrightarrow 00:37:07.368$ The thing I want to emphasize right

NOTE Confidence: 0.828217057666666

 $00:37:07.368 \longrightarrow 00:37:09.460$ now is we've given colors for all

NOTE Confidence: 0.828217057666666

 $00:37:09.460 \longrightarrow 00:37:11.005$ of those exogenous sources that

NOTE Confidence: 0.828217057666666

 $00:37:11.005 \longrightarrow 00:37:12.805$ may in principle be things that

NOTE Confidence: 0.828217057666666

 $00:37:12.805 \longrightarrow 00:37:14.942$ we could interfere on to stop.

NOTE Confidence: 0.828217057666666

00:37:14.942 --> 00:37:17.750 So UV light, defective,

NOTE Confidence: 0.828217057666666

00:37:17.750 --> 00:37:18.689 homologous recombination, presumably,

NOTE Confidence: 0.828217057666666

 $00:37:18.689 \longrightarrow 00:37:21.180$ maybe there be a way to do that,

NOTE Confidence: 0.828217057666666

 $00:37:21.180 \longrightarrow 00:37:22.512$ apobec perhaps if we.

NOTE Confidence: 0.828217057666666

00:37:22.512 --> 00:37:25.412 You know, avoided viral infection,

NOTE Confidence: 0.828217057666666

 $00:37:25.412 \dashrightarrow 00:37:28.388 \ to bacco \ certainly \ interventional \ alcohol,$

NOTE Confidence: 0.828217057666666

 $00:37:28.390 \longrightarrow 00:37:30.130$ definitely something we can intervention on.

NOTE Confidence: 0.828217057666666

 $00:37:30.130 \longrightarrow 00:37:31.574$ Mutagenic chemical exposures definitely

 $00:37:31.574 \longrightarrow 00:37:34.130$ something we can do intervention on anyway.

NOTE Confidence: 0.828217057666666

 $00:37:34.130 \longrightarrow 00:37:35.930$ All those interventional ones are the

NOTE Confidence: 0.828217057666666

 $00:37:35.930 \longrightarrow 00:37:38.205$ colored ones and the aging ones are the

NOTE Confidence: 0.828217057666666

 $00:37:38.205 \longrightarrow 00:37:40.300$ Gray ones and then the unknown processes.

NOTE Confidence: 0.828217057666666

 $00:37:40.300 \longrightarrow 00:37:42.244$ The process is that we haven't figured out

NOTE Confidence: 0.828217057666666

 $00:37:42.244 \longrightarrow 00:37:44.057$ what they're associated with are in black.

NOTE Confidence: 0.828217057666666

 $00:37:44.060 \longrightarrow 00:37:45.968$ So this diagram actually tells you

NOTE Confidence: 0.828217057666666

 $00:37:45.968 \longrightarrow 00:37:48.610$ a lot about what you can do now

NOTE Confidence: 0.828217057666666

 $00{:}37{:}48.610 \dashrightarrow 00{:}37{:}50.240$ to understand more about cancer,

NOTE Confidence: 0.828217057666666

 $00:37:50.240 \longrightarrow 00:37:52.543$ right because or to intervene we can

NOTE Confidence: 0.828217057666666

 $00{:}37{:}52.543 \dashrightarrow 00{:}37{:}55.186$ intervene a lot on these cancer on these

NOTE Confidence: 0.828217057666666

 $00:37:55.186 \longrightarrow 00:37:58.040$ cancer types for which we see a lot of color.

NOTE Confidence: 0.828217057666666

 $00:37:58.040 \longrightarrow 00:37:59.246$ We there's much less we can

NOTE Confidence: 0.828217057666666

 $00:37:59.246 \longrightarrow 00:38:00.519$ do for the ones we don't.

NOTE Confidence: 0.828217057666666

 $00:38:00.520 \longrightarrow 00:38:02.823$ So for instance glioma very a lot

NOTE Confidence: 0.828217057666666

 $00:38:02.823 \longrightarrow 00:38:05.460$ of aging not a lot of other things,

00:38:05.460 --> 00:38:07.260 thyroid cancer, a lot of apobec,

NOTE Confidence: 0.828217057666666

 $00{:}38{:}07.260 \to 00{:}38{:}09.921$ but other than that aging glioblastoma.

NOTE Confidence: 0.828217057666666

00:38:09.921 --> 00:38:13.182 Again, a lot of aging prostate cancer,

NOTE Confidence: 0.828217057666666

 $00:38:13.182 \longrightarrow 00:38:14.286$ a lot of aging,

NOTE Confidence: 0.828217057666666

 $00:38:14.290 \longrightarrow 00:38:17.146$ just a little bit of a pobec and

NOTE Confidence: 0.828217057666666

 $00:38:17.146 \longrightarrow 00:38:18.370$ defective homologous recombination.

NOTE Confidence: 0.828217057666666

 $00:38:18.370 \longrightarrow 00:38:20.197$ So there's some we don't have much

NOTE Confidence: 0.828217057666666

00:38:20.197 --> 00:38:21.808 way to intervene on skin cancer,

NOTE Confidence: 0.828217057666666

 $00{:}38{:}21.810 \dashrightarrow 00{:}38{:}24.500$ extremely easy to intervene to

NOTE Confidence: 0.828217057666666

 $00:38:24.500 \longrightarrow 00:38:27.190$ reduce the number of mutations,

NOTE Confidence: 0.828217057666666

00:38:27.190 --> 00:38:29.626 lung cancer, a lot of tobacco,

NOTE Confidence: 0.828217057666666

 $00:38:29.630 \longrightarrow 00:38:30.818$ a lot of defective,

NOTE Confidence: 0.828217057666666

00:38:30.818 --> 00:38:32.006 longest recombination and Apple jack.

NOTE Confidence: 0.828217057666666

 $00:38:32.010 \longrightarrow 00:38:33.792$ So there's a lot we can do in terms

NOTE Confidence: 0.828217057666666

 $00:38:33.792 \longrightarrow 00:38:35.713$ of stopping those and then also where

 $00:38:35.713 \longrightarrow 00:38:37.609$ there's a lot more to understand.

NOTE Confidence: 0.828217057666666

 $00{:}38{:}37.610 \dashrightarrow 00{:}38{:}38.850$ So for instance, breast cancer,

NOTE Confidence: 0.828217057666666

 $00:38:38.850 \longrightarrow 00:38:40.440 \text{ ER } 9 \text{ minus breast cancer.}$

NOTE Confidence: 0.828217057666666

 $00:38:40.440 \longrightarrow 00:38:41.958$ Like nearly half of the mutations,

NOTE Confidence: 0.828217057666666

 $00:38:41.960 \longrightarrow 00:38:43.718$ we don't know why they're being

NOTE Confidence: 0.828217057666666

 $00:38:43.718 \longrightarrow 00:38:44.597$ caused process wise.

NOTE Confidence: 0.828217057666666

 $00:38:44.600 \longrightarrow 00:38:47.155$ So this is something to be investigated

NOTE Confidence: 0.828217057666666

00:38:47.160 --> 00:38:48.238 because if we could figure it out,

NOTE Confidence: 0.828217057666666

 $00:38:48.240 \longrightarrow 00:38:50.700$ maybe there are these interminable

NOTE Confidence: 0.828217057666666

 $00:38:50.700 \longrightarrow 00:38:52.296$ processes that we could do something about.

NOTE Confidence: 0.902923374

 $00:38:54.630 \longrightarrow 00:38:55.560$ Etcetera. So you can sort

NOTE Confidence: 0.902923374

 $00:38:55.560 \longrightarrow 00:38:56.490$ of look at the black.

NOTE Confidence: 0.902923374

 $00:38:56.490 \longrightarrow 00:38:58.138$ That gives you an idea of how much

NOTE Confidence: 0.902923374

 $00:38:58.138 \longrightarrow 00:38:59.870$ we still need to learn and the Gray

NOTE Confidence: 0.902923374

 $00:38:59.870 \longrightarrow 00:39:01.389$ tells you and the idea of like,

NOTE Confidence: 0.902923374

 $00:39:01.390 \longrightarrow 00:39:04.138$ how much more.

 $00:39:04.140 \longrightarrow 00:39:06.276$ How much aging versus other processes

NOTE Confidence: 0.902923374

 $00:39:06.276 \longrightarrow 00:39:08.919$ seem to be causing that given cancer?

NOTE Confidence: 0.902923374

 $00:39:08.920 \longrightarrow 00:39:10.630$ And of course the cancers that

NOTE Confidence: 0.902923374

 $00:39:10.630 \longrightarrow 00:39:12.083$ are most age-related are at

NOTE Confidence: 0.902923374

 $00:39:12.083 \longrightarrow 00:39:13.378$ the bottom of this diagram,

NOTE Confidence: 0.902923374

 $00:39:13.380 \longrightarrow 00:39:14.694$ and the ones that are least

NOTE Confidence: 0.902923374

 $00:39:14.694 \longrightarrow 00:39:16.059$ age-related tend to be higher up.

NOTE Confidence: 0.852804418

 $00:39:18.160 \longrightarrow 00:39:20.552$ So this is just a bigger diagram of

NOTE Confidence: 0.852804418

 $00:39:20.552 \longrightarrow 00:39:22.956$ of that same picture in case Umm,

NOTE Confidence: 0.852804418

 $00:39:22.960 \longrightarrow 00:39:24.590$ you can see it better.

NOTE Confidence: 0.852804418

 $00{:}39{:}24.590 \dashrightarrow 00{:}39{:}26.137$ And then I'm going to show you,

NOTE Confidence: 0.852804418

00:39:26.140 --> 00:39:27.352 I'm not going to show you

NOTE Confidence: 0.852804418

 $00:39:27.352 \longrightarrow 00:39:28.160$ the actual cancer types,

NOTE Confidence: 0.852804418

 $00:39:28.160 \longrightarrow 00:39:29.990$ but just an animation that actually

NOTE Confidence: 0.852804418

 $00:39:29.990 \longrightarrow 00:39:31.565$ Vincent Cantero made that helps

00:39:31.565 --> 00:39:33.065 you see the difference between

NOTE Confidence: 0.852804418

 $00{:}39{:}33.065 \dashrightarrow 00{:}39{:}34.720$ the cancer mutation and effects.

NOTE Confidence: 0.852804418

 $00:39:34.720 \longrightarrow 00:39:36.748$ So this just varies between how

NOTE Confidence: 0.852804418

00:39:36.748 --> 00:39:38.772 much mutation is causing the given

NOTE Confidence: 0.852804418

 $00:39:38.772 \longrightarrow 00:39:40.886$ cancer and how much of the cancer

NOTE Confidence: 0.852804418

 $00:39:40.886 \longrightarrow 00:39:42.913$ affect by those mutations is causing

NOTE Confidence: 0.852804418

 $00:39:42.913 \longrightarrow 00:39:45.036$ the cancer and allows you to sort

NOTE Confidence: 0.852804418

 $00:39:45.036 \longrightarrow 00:39:46.404$ of see how different they are.

NOTE Confidence: 0.801817787142857

 $00:39:49.480 \longrightarrow 00:39:51.699$ You know, for ones like skin cancer,

NOTE Confidence: 0.801817787142857

00:39:51.700 --> 00:39:53.184 it doesn't change that much because nearly

NOTE Confidence: 0.801817787142857

 $00{:}39{:}53.184 \dashrightarrow 00{:}39{:}54.830$ all the mutations are caused by UV anyway.

NOTE Confidence: 0.92253798

 $00:39:57.030 \longrightarrow 00:39:59.850$ All right. So as we said,

NOTE Confidence: 0.92253798

 $00:39:59.850 \longrightarrow 00:40:00.694$ as I said earlier,

NOTE Confidence: 0.92253798

 $00:40:00.694 \longrightarrow 00:40:01.960$ the extent to which the processes

NOTE Confidence: 0.92253798

 $00:40:02.010 \longrightarrow 00:40:02.934$ contribute determines tumor

NOTE Confidence: 0.92253798

 $00:40:02.934 \longrightarrow 00:40:04.166$ Genesis has been unknown.

 $00:40:04.170 \longrightarrow 00:40:06.872$ But now we can link it together

NOTE Confidence: 0.92253798

 $00:40:06.872 \longrightarrow 00:40:08.030$ with this process.

NOTE Confidence: 0.92253798

 $00:40:08.030 \longrightarrow 00:40:09.678$ And now I wanted to go back to

NOTE Confidence: 0.92253798

 $00:40:09.678 \longrightarrow 00:40:11.127$ this slide because I'm going to

NOTE Confidence: 0.92253798

 $00{:}40{:}11.127 \dashrightarrow 00{:}40{:}13.060$ show you a bunch of diagrams and

NOTE Confidence: 0.92253798

 $00{:}40{:}13.060 \dashrightarrow 00{:}40{:}14.668$ they're pretty complicated diagrams.

NOTE Confidence: 0.92253798

00:40:14.670 --> 00:40:16.446 But on the left hand side is going

NOTE Confidence: 0.92253798

 $00:40:16.446 \longrightarrow 00:40:18.474$ to be a bar plot that's respect

NOTE Confidence: 0.92253798

 $00:40:18.474 \longrightarrow 00:40:20.440$ reflecting like how much each process

NOTE Confidence: 0.92253798

 $00:40:20.440 \longrightarrow 00:40:22.335$ is contributing to the mutations.

NOTE Confidence: 0.92253798

 $00:40:22.340 \longrightarrow 00:40:23.864$ It's this left hand sign sign

NOTE Confidence: 0.92253798

 $00:40:23.864 \longrightarrow 00:40:25.674$ and on the right of each plot

NOTE Confidence: 0.92253798

 $00:40:25.674 \longrightarrow 00:40:27.144$ is going to be another bar.

NOTE Confidence: 0.92253798

 $00:40:27.150 \longrightarrow 00:40:29.467$ Plot that shows you how much each

NOTE Confidence: 0.92253798

 $00:40:29.467 \longrightarrow 00:40:31.817$ mutation is contributing to the increased

 $00:40:31.817 \longrightarrow 00:40:33.545$ cellular proliferation and survival.

NOTE Confidence: 0.92253798

 $00:40:33.550 \longrightarrow 00:40:35.610$ For four different cancers,

NOTE Confidence: 0.92253798

00:40:35.610 --> 00:40:37.670 here's primary skin cancer.

NOTE Confidence: 0.92253798

00:40:37.670 --> 00:40:42.128 Sorry, primary and metastatic skin cancer.

NOTE Confidence: 0.92253798

 $00:40:42.130 \longrightarrow 00:40:45.230$ Colorectal cancer.

NOTE Confidence: 0.92253798

00:40:45.230 --> 00:40:46.310 Actually this color,

NOTE Confidence: 0.92253798

 $00:40:46.310 \longrightarrow 00:40:47.030$ colon cancer,

NOTE Confidence: 0.92253798

00:40:47.030 --> 00:40:48.425 HPV negative head,

NOTE Confidence: 0.92253798

 $00{:}40{:}48.425 \dashrightarrow 00{:}40{:}51.438$ neck cancer and thyroid cancer and the

NOTE Confidence: 0.92253798

 $00:40:51.438 \longrightarrow 00:40:53.846$ diagrams are this bar versus this bar.

NOTE Confidence: 0.92253798

 $00{:}40{:}53.850 \dashrightarrow 00{:}40{:}55.794$ So the bar on the left is how

NOTE Confidence: 0.92253798

 $00:40:55.794 \longrightarrow 00:40:57.934$ much of a gift for a specific

NOTE Confidence: 0.92253798

00:40:57.934 --> 00:40:59.937 tumor was contributed by a given

NOTE Confidence: 0.92253798

 $00:40:59.937 \longrightarrow 00:41:02.422$ process and then how much of the

NOTE Confidence: 0.92253798

 $00:41:02.422 \longrightarrow 00:41:04.073$ oncogenesis for that tumor was

NOTE Confidence: 0.92253798

 $00:41:04.073 \longrightarrow 00:41:05.628$ caused by that particular process.

 $00:41:05.630 \longrightarrow 00:41:07.905$ And I've lined these up so that

NOTE Confidence: 0.92253798

00:41:07.905 --> 00:41:09.924 what I'm showing you is just

NOTE Confidence: 0.92253798

 $00:41:09.924 \longrightarrow 00:41:11.874$ five examples here from TCJ and

NOTE Confidence: 0.92253798

 $00:41:11.874 \longrightarrow 00:41:14.029$ this is actually from some data

NOTE Confidence: 0.92253798

 $00{:}41{:}14.030 \dashrightarrow 00{:}41{:}16.256$ gathered here at Yale on Melanoma.

NOTE Confidence: 0.92253798

00:41:16.260 --> 00:41:17.100 But anyway,

NOTE Confidence: 0.92253798

 $00:41:17.100 \longrightarrow 00:41:18.780$ we've looked across these

NOTE Confidence: 0.92253798

 $00:41:18.780 \longrightarrow 00:41:20.040$ different cancer type,

NOTE Confidence: 0.92253798

 $00:41:20.040 \longrightarrow 00:41:21.315$ these different tumors and the

NOTE Confidence: 0.92253798

 $00:41:21.315 \longrightarrow 00:41:22.590$ question is are these different

NOTE Confidence: 0.92253798

 $00:41:22.635 \longrightarrow 00:41:23.499$ or are these similar?

NOTE Confidence: 0.92253798

 $00:41:23.500 \longrightarrow 00:41:25.180$ Like is the basic mutagenic effect

NOTE Confidence: 0.92253798

 $00:41:25.180 \longrightarrow 00:41:27.123$ and the cancer effect similar or is

NOTE Confidence: 0.92253798

 $00:41:27.123 \longrightarrow 00:41:28.908$ it different and you see they're very

NOTE Confidence: 0.92253798

00:41:28.965 --> 00:41:30.615 similar for two these two tumors,

 $00:41:30.620 \longrightarrow 00:41:32.145$ very similar for this third

NOTE Confidence: 0.92253798

00:41:32.145 --> 00:41:33.670 getting a little different here

NOTE Confidence: 0.92253798

 $00:41:33.730 \longrightarrow 00:41:35.440$ and getting quite different here.

NOTE Confidence: 0.92253798

 $00:41:35.440 \longrightarrow 00:41:38.164$ And these are arranged at the

NOTE Confidence: 0.92253798

 $00:41:38.164 \longrightarrow 00:41:39.980$ quartiles of the distribution.

NOTE Confidence: 0.92253798

 $00:41:39.980 \longrightarrow 00:41:41.408$ So it sort of represents the

NOTE Confidence: 0.92253798

00:41:41.408 --> 00:41:43.240 range of what you see in patients.

NOTE Confidence: 0.92253798

 $00:41:43.240 \longrightarrow 00:41:44.956$ So most of the time mutagenic

NOTE Confidence: 0.92253798

 $00:41:44.956 \longrightarrow 00:41:46.100$ effect and cancer causation.

NOTE Confidence: 0.92253798

00:41:46.100 --> 00:41:47.714 Are aligned very closely in primary

NOTE Confidence: 0.92253798

 $00{:}41{:}47.714 \dashrightarrow 00{:}41{:}49.695$ skin cancer and that's because UV is

NOTE Confidence: 0.92253798

 $00:41:49.695 \longrightarrow 00:41:51.110$ causing almost all these mutations

NOTE Confidence: 0.92253798

 $00:41:51.110 \longrightarrow 00:41:52.925$ and changing things in colon cancer.

NOTE Confidence: 0.92253798

 $00:41:52.925 \longrightarrow 00:41:54.755$ As you extend from the more

NOTE Confidence: 0.92253798

 $00:41:54.755 \longrightarrow 00:41:56.407$ similar to the more different,

NOTE Confidence: 0.92253798

 $00:41:56.410 \longrightarrow 00:41:58.312$ you see a lot more heterogeneity

00:41:58.312 --> 00:42:00.521 from patient to patient in terms of

NOTE Confidence: 0.92253798

 $00:42:00.521 \longrightarrow 00:42:02.285$ whether or not the causative factors

NOTE Confidence: 0.92253798

 $00:42:02.285 \longrightarrow 00:42:04.507$ are the same as the myogenic factors.

NOTE Confidence: 0.92253798

 $00:42:04.510 \longrightarrow 00:42:06.286$ And that gets even more extreme

NOTE Confidence: 0.92253798

00:42:06.286 --> 00:42:07.470 with HPV negative head,

NOTE Confidence: 0.92253798

 $00:42:07.470 \longrightarrow 00:42:10.085$ neck cancer and even more

NOTE Confidence: 0.92253798

 $00:42:10.085 \longrightarrow 00:42:12.177$ extreme with thyroid cancer.

NOTE Confidence: 0.92253798

 $00:42:12.180 \longrightarrow 00:42:15.414$ So, but let me just emphasize again,

NOTE Confidence: 0.92253798

 $00:42:15.420 \longrightarrow 00:42:17.130$ these measures are for individual patients.

NOTE Confidence: 0.92253798

 $00{:}42{:}17.130 \dashrightarrow 00{:}42{:}19.404$ So in principle this calculation can

NOTE Confidence: 0.92253798

 $00:42:19.404 \longrightarrow 00:42:22.334$ be done on any tumor sequence from

NOTE Confidence: 0.92253798

 $00{:}42{:}22.334 \rightarrow 00{:}42{:}25.010$ an individual patient to tell you.

NOTE Confidence: 0.92253798

00:42:25.010 --> 00:42:27.652 What the causation of their cancer was,

NOTE Confidence: 0.92253798

 $00:42:27.652 \longrightarrow 00:42:30.396$ at least to the level that we

NOTE Confidence: 0.92253798

 $00:42:30.400 \longrightarrow 00:42:31.486$ are able to analyze this now,

 $00:42:31.490 \longrightarrow 00:42:32.906$ there's a bunch of things that

NOTE Confidence: 0.92253798

 $00:42:32.906 \longrightarrow 00:42:34.652$ are that we would love to also

NOTE Confidence: 0.92253798

 $00:42:34.652 \longrightarrow 00:42:36.158$ be able to incorporate into this.

NOTE Confidence: 0.92253798

 $00:42:36.160 \longrightarrow 00:42:37.900$ This is only single nucleotide mutations.

NOTE Confidence: 0.92253798

 $00:42:37.900 \longrightarrow 00:42:39.490$ It doesn't take into account

NOTE Confidence: 0.92253798

 $00:42:39.490 \longrightarrow 00:42:40.444$ copy number variation.

NOTE Confidence: 0.92253798

00:42:40.450 --> 00:42:41.755 It doesn't take into account

NOTE Confidence: 0.92253798

 $00:42:41.755 \longrightarrow 00:42:42.277$ epigenetic changes.

NOTE Confidence: 0.92253798

 $00:42:42.280 \longrightarrow 00:42:43.596$ And as I said at the outset,

NOTE Confidence: 0.8360394

 $00:42:43.600 \longrightarrow 00:42:45.536$ none of this has to do with physiological

NOTE Confidence: 0.8360394

 $00{:}42{:}45.536 \to 00{:}42{:}47.355$ things like whether you exercise and have

NOTE Confidence: 0.8360394

00:42:47.355 --> 00:42:49.419 good autophagy in your you know it doesn't.

NOTE Confidence: 0.8360394

 $00:42:49.420 \longrightarrow 00:42:50.508$ It's not that physiological

NOTE Confidence: 0.8360394

00:42:50.508 --> 00:42:52.140 question of why you got cancer,

NOTE Confidence: 0.8360394

 $00:42:52.140 \longrightarrow 00:42:53.375$ but it is the mutagenic

NOTE Confidence: 0.8360394

 $00:42:53.375 \longrightarrow 00:42:55.060$ answer of why you got cancer.

 $00:42:55.060 \longrightarrow 00:42:59.853$ Down at the SMV level. Uh. And.

NOTE Confidence: 0.8360394

 $00:42:59.853 \longrightarrow 00:43:03.692$ So it reveals that and so that, so.

NOTE Confidence: 0.8360394

 $00:43:03.692 \longrightarrow 00:43:05.386$ So I think we're very good there.

NOTE Confidence: 0.8360394

 $00:43:05.390 \longrightarrow 00:43:07.371$ I would argue that the logic behind

NOTE Confidence: 0.8360394

 $00:43:07.371 \longrightarrow 00:43:09.779$ this is right and that we can apply

NOTE Confidence: 0.8360394

 $00:43:09.779 \longrightarrow 00:43:11.485$ that same logic to epigenetics to

NOTE Confidence: 0.8360394

 $00:43:11.485 \longrightarrow 00:43:12.666$ to copy number changes etcetera.

NOTE Confidence: 0.8360394

 $00:43:12.666 \longrightarrow 00:43:14.220$ There's just a lot of understanding.

NOTE Confidence: 0.8360394

00:43:14.220 --> 00:43:16.166 We still need of the basic underlying

NOTE Confidence: 0.8360394

00:43:16.166 --> 00:43:17.573 mutation rate for those things

NOTE Confidence: 0.8360394

00:43:17.573 --> 00:43:19.348 in order to actually do that and

NOTE Confidence: 0.8360394

 $00:43:19.348 \longrightarrow 00:43:20.874$ we're trying to work on that now.

NOTE Confidence: 0.873409281333333

 $00{:}43{:}23.100 \dashrightarrow 00{:}43{:}24.752$ Now I just this, this is basically

NOTE Confidence: 0.873409281333333

 $00:43:24.752 \longrightarrow 00:43:26.746$ the the end of the major talk but

NOTE Confidence: 0.873409281333333

00:43:26.746 --> 00:43:28.469 I just want to emphasize that this

00:43:28.469 --> 00:43:30.443 doesn't just apply to the origin of

NOTE Confidence: 0.873409281333333

 $00:43:30.450 \longrightarrow 00:43:33.040$ cancer in the early tumor genesis the

NOTE Confidence: 0.873409281333333

 $00:43:33.040 \longrightarrow 00:43:35.867$ same the same processes are going on

NOTE Confidence: 0.873409281333333

00:43:35.867 --> 00:43:38.286 in patients as we treat them as well.

NOTE Confidence: 0.873409281333333

 $00:43:38.290 \longrightarrow 00:43:40.660$ So there is you know so if you have a

NOTE Confidence: 0.873409281333333

00:43:40.729 --> 00:43:43.150 patient where you take out a a biopsy or

NOTE Confidence: 0.873409281333333

 $00:43:43.150 \longrightarrow 00:43:45.720$ a resection and then they undergo some

NOTE Confidence: 0.873409281333333

 $00{:}43{:}45.720 \dashrightarrow 00{:}43{:}47.856$ sort of treatment and have recurrence

NOTE Confidence: 0.873409281333333

 $00:43:47.856 \longrightarrow 00:43:50.117$ there are ways to figure out exactly

NOTE Confidence: 0.873409281333333

 $00:43:50.117 \longrightarrow 00:43:52.458$ what the underlying processes that are

NOTE Confidence: 0.873409281333333

 $00{:}43{:}52.458 \dashrightarrow 00{:}43{:}54.413$ contributing to the mutations that.

NOTE Confidence: 0.873409281333333

 $00:43:54.420 \longrightarrow 00:43:55.664$ Because that recurrence are.

NOTE Confidence: 0.873409281333333

 $00:43:55.664 \longrightarrow 00:43:58.349$ So that should be of interest to all of

NOTE Confidence: 0.873409281333333

 $00{:}43{:}58.349 \dashrightarrow 00{:}44{:}00.113$ us who are interested in figuring out

NOTE Confidence: 0.873409281333333

 $00:44:00.174 \longrightarrow 00:44:02.109$ what's causing recurrence in cancer.

NOTE Confidence: 0.873409281333333

 $00:44:02.110 \longrightarrow 00:44:03.630$ So there's a clinical as well as the

 $00:44:03.630 \longrightarrow 00:44:05.200$ sort of more public health side that

NOTE Confidence: 0.873409281333333

 $00{:}44{:}05.200 \dashrightarrow 00{:}44{:}06.847$ I was talking about with regard to

NOTE Confidence: 0.873409281333333

 $00:44:06.847 \longrightarrow 00:44:08.221$ these mutations and clinical side of

NOTE Confidence: 0.873409281333333

 $00:44:08.221 \longrightarrow 00:44:10.090$ how we might be able to apply this.

NOTE Confidence: 0.873409281333333

00:44:10.090 --> 00:44:12.820 And just to give you 2 material

NOTE Confidence: 0.873409281333333

 $00:44:12.820 \longrightarrow 00:44:15.121$ examples of this, here are two,

NOTE Confidence: 0.873409281333333

00:44:15.121 --> 00:44:18.144 I'm going to show you two sort of

NOTE Confidence: 0.873409281333333

 $00{:}44{:}18.144 \dashrightarrow 00{:}44{:}20.029$ tree studies of individual patients.

NOTE Confidence: 0.873409281333333

 $00:44:20.030 \longrightarrow 00:44:24.430$ These were led by Nick Fisk in my lab.

NOTE Confidence: 0.873409281333333

 $00:44:24.430 \longrightarrow 00:44:29.094$ And here's a patient who was diagnosed

NOTE Confidence: 0.873409281333333

 $00:44:29.094 \longrightarrow 00:44:31.879$ with stage 3B lung cancer.

NOTE Confidence: 0.873409281333333

00:44:31.880 --> 00:44:34.624 They had an EGFR exon 19 deletion

NOTE Confidence: 0.873409281333333

 $00{:}44{:}34.624 \dashrightarrow 00{:}44{:}36.930$ and their tumor was resected.

NOTE Confidence: 0.873409281333333

 $00:44:36.930 \longrightarrow 00:44:39.540$ They were given cisplatin and permatex

NOTE Confidence: 0.873409281333333

 $00:44:39.540 \longrightarrow 00:44:41.600$ bib and this there's a little pipe

 $00:44:41.600 \longrightarrow 00:44:43.903$ part and this is a phylogenetic tree

NOTE Confidence: 0.873409281333333

 $00:44:43.903 \longrightarrow 00:44:45.833$ relating their metastatic tumors to

NOTE Confidence: 0.873409281333333

 $00:44:45.833 \longrightarrow 00:44:48.157$ the primary tumor and it's been dated.

NOTE Confidence: 0.873409281333333

 $00:44:48.160 \longrightarrow 00:44:49.476$ We have all these techniques in my

NOTE Confidence: 0.873409281333333

 $00:44:49.476 \longrightarrow 00:44:51.067$ lab to date that based on the when

NOTE Confidence: 0.873409281333333

00:44:51.067 --> 00:44:52.573 the primary tumor was and how many

NOTE Confidence: 0.873409281333333

 $00:44:52.573 \longrightarrow 00:44:53.832$ mutations we see etcetera, etcetera.

NOTE Confidence: 0.873409281333333

 $00{:}44{:}53.832 \dashrightarrow 00{:}44{:}55.644$ These were extracted at a later

NOTE Confidence: 0.873409281333333

 $00:44:55.644 \longrightarrow 00:44:56.550$ date than this,

NOTE Confidence: 0.873409281333333

 $00:44:56.550 \longrightarrow 00:44:58.020$ and so that gives us a way

NOTE Confidence: 0.873409281333333

 $00:44:58.020 \longrightarrow 00:44:58.950$ to calibrate the time.

NOTE Confidence: 0.873409281333333

00:44:58.950 --> 00:45:01.198 And what you see here in these pie

NOTE Confidence: 0.873409281333333

 $00{:}45{:}01.198 \dashrightarrow 00{:}45{:}03.487$ charts is I've I've made it simpler.

NOTE Confidence: 0.873409281333333

 $00:45:03.490 \longrightarrow 00:45:05.380$ I just am looking at all other

NOTE Confidence: 0.873409281333333

 $00:45:05.380 \longrightarrow 00:45:06.690$ kinds of mutagenic sources.

NOTE Confidence: 0.873409281333333

 $00:45:06.690 \longrightarrow 00:45:08.178$ And one specific source

 $00:45:08.178 \longrightarrow 00:45:09.666$ that I'm interested in.

NOTE Confidence: 0.873409281333333

 $00:45:09.670 \longrightarrow 00:45:10.690$ And in this particular case,

NOTE Confidence: 0.873409281333333

 $00{:}45{:}10.690 \dashrightarrow 00{:}45{:}12.100$ the source I'm interested in

NOTE Confidence: 0.873409281333333

 $00:45:12.100 \longrightarrow 00:45:13.510$ is the effect of cisplatin,

NOTE Confidence: 0.873409281333333

 $00:45:13.510 \longrightarrow 00:45:16.222$ which we know has a mutagenic

NOTE Confidence: 0.873409281333333

 $00:45:16.222 \longrightarrow 00:45:18.659$ effect on tumors even as it.

NOTE Confidence: 0.873409281333333

 $00:45:18.660 \longrightarrow 00:45:21.271$ The you know applies its own selective

NOTE Confidence: 0.873409281333333

 $00{:}45{:}21.271 \to 00{:}45{:}23.266$ effect killing tumor cells and what

NOTE Confidence: 0.873409281333333

 $00{:}45{:}23.266 \dashrightarrow 00{:}45{:}25.677$ you can see here is that the cisplatin

NOTE Confidence: 0.873409281333333

 $00{:}45{:}25.677 \dashrightarrow 00{:}45{:}28.329$ mutations on this branch so this

NOTE Confidence: 0.873409281333333

00:45:28.329 --> 00:45:29.899 is independently determined right.

NOTE Confidence: 0.873409281333333

 $00:45:29.899 \longrightarrow 00:45:31.333$ This isn't because cisplatin is here

NOTE Confidence: 0.873409281333333

 $00{:}45{:}31.333 \dashrightarrow 00{:}45{:}33.213$ we just did the deconvolution and boom

NOTE Confidence: 0.873409281333333

 $00:45:33.213 \longrightarrow 00:45:34.881$ here are all these despite mutations.

NOTE Confidence: 0.873409281333333

 $00:45:34.890 \longrightarrow 00:45:36.810$ This white pie piece here almost

 $00:45:36.810 \longrightarrow 00:45:39.560$ you know a bit less than 1/4 of or

NOTE Confidence: 0.873409281333333

 $00:45:39.560 \longrightarrow 00:45:41.889$ around 1/5 of the the mutations in

NOTE Confidence: 0.873409281333333

 $00:45:41.889 \longrightarrow 00:45:44.463$ this tumor are now cisplatin derived

NOTE Confidence: 0.873409281333333

 $00:45:44.463 \longrightarrow 00:45:46.053$ mutations and we can deconvolve

NOTE Confidence: 0.873409281333333

 $00:45:46.053 \longrightarrow 00:45:47.740$ that by doing this tree and seeing

NOTE Confidence: 0.873409281333333

 $00:45:47.786 \longrightarrow 00:45:49.130$ OK on this branch right here.

NOTE Confidence: 0.873409281333333

00:45:49.130 --> 00:45:51.186 That's how many are are that kind of

NOTE Confidence: 0.873409281333333

 $00:45:51.186 \longrightarrow 00:45:53.122$ mutation and then and then that of

NOTE Confidence: 0.873409281333333

 $00:45:53.122 \longrightarrow 00:45:54.808$ course that tumor continued to evolve

NOTE Confidence: 0.873409281333333

 $00:45:54.808 \longrightarrow 00:45:56.677$ and the reason it continued to evolve

NOTE Confidence: 0.873409281333333

 $00{:}45{:}56.677 \dashrightarrow 00{:}45{:}59.656$ it was the patient was given or alot nib.

NOTE Confidence: 0.873409281333333

 $00:45:59.660 \longrightarrow 00:46:01.155$ Unfortunately a lot nib wasn't

NOTE Confidence: 0.873409281333333

 $00{:}46{:}01.155 \dashrightarrow 00{:}46{:}02.650$ very successful in this case

NOTE Confidence: 0.788800622142857

 $00{:}46{:}02.705 \dashrightarrow 00{:}46{:}04.576$ because they got the EGFR T790M

NOTE Confidence: 0.788800622142857

 $00:46:04.576 \longrightarrow 00:46:07.144$ resistance mutation on this branch as

NOTE Confidence: 0.788800622142857

 $00:46:07.144 \longrightarrow 00:46:12.390$ well and the tumor differentiated into

 $00:46:12.390 \longrightarrow 00:46:15.394$ these metastatic metastatic tumors and

NOTE Confidence: 0.788800622142857

 $00:46:15.394 \longrightarrow 00:46:17.542$ another metastatic tumor in the pancreas

NOTE Confidence: 0.788800622142857

 $00{:}46{:}17.542 \dashrightarrow 00{:}46{:}19.690$ and and the point is here just that.

NOTE Confidence: 0.788800622142857

 $00:46:19.690 \longrightarrow 00:46:21.415$ The proportion of cisplatin was

NOTE Confidence: 0.788800622142857

00:46:21.415 --> 00:46:23.511 discontinued and so the proportion of

NOTE Confidence: 0.788800622142857

00:46:23.511 --> 00:46:25.081 mutations in subsequent branches is

NOTE Confidence: 0.788800622142857

00:46:25.081 --> 00:46:27.268 actually lower out of the total because

NOTE Confidence: 0.788800622142857

 $00:46:27.268 \longrightarrow 00:46:29.319$ new mutations are being added but they

NOTE Confidence: 0.788800622142857

 $00{:}46{:}29.320 \dashrightarrow 00{:}46{:}31.180$ aren't cisplatin related mutations.

NOTE Confidence: 0.788800622142857

 $00{:}46{:}31.180 \dashrightarrow 00{:}46{:}33.998$ So all of this deconvolution and

NOTE Confidence: 0.788800622142857

00:46:33.998 --> 00:46:36.438 understanding of the underlying mutagenic

NOTE Confidence: 0.788800622142857

 $00:46:36.438 \longrightarrow 00:46:38.942$ causation occurs during this treatment

NOTE Confidence: 0.788800622142857

 $00{:}46{:}38.942 \dashrightarrow 00{:}46{:}41.378$ process that that patients receive.

NOTE Confidence: 0.788800622142857

 $00:46:41.378 \longrightarrow 00:46:43.580$ And we can figure it out.

NOTE Confidence: 0.788800622142857

00:46:43.580 --> 00:46:44.370 There's one more point that

 $00:46:44.370 \longrightarrow 00:46:45.370$ I just want to make here,

NOTE Confidence: 0.788800622142857

00:46:45.370 --> 00:46:47.746 which is that it turns out,

NOTE Confidence: 0.788800622142857

00:46:47.750 --> 00:46:49.254 and I don't have a plot for this,

NOTE Confidence: 0.788800622142857

 $00:46:49.260 \longrightarrow 00:46:51.794$ but the T790M mutation is a mutation

NOTE Confidence: 0.788800622142857

 $00:46:51.794 \longrightarrow 00:46:54.373$ that is very likely to be caused

NOTE Confidence: 0.788800622142857

 $00:46:54.373 \longrightarrow 00:46:56.497$ just like those other ones I

NOTE Confidence: 0.788800622142857

 $00:46:56.580 \longrightarrow 00:46:59.020$ showed you by cisplatin mutation.

NOTE Confidence: 0.788800622142857

 $00:46:59.020 \longrightarrow 00:47:01.694$ So this is a poor ordering clinically

NOTE Confidence: 0.788800622142857

 $00{:}47{:}01.694 \dashrightarrow 00{:}47{:}04.095$ for these treatments to be given

NOTE Confidence: 0.788800622142857

 $00:47:04.095 \longrightarrow 00:47:05.675$ because this despite mutation,

NOTE Confidence: 0.788800622142857

 $00:47:05.680 \longrightarrow 00:47:07.462$ creates a bunch of that genetic

NOTE Confidence: 0.788800622142857

 $00:47:07.462 \longrightarrow 00:47:09.169$ variation that is exactly what we

NOTE Confidence: 0.788800622142857

00:47:09.169 --> 00:47:10.772 don't want to have if we're going

NOTE Confidence: 0.788800622142857

 $00:47:10.772 \longrightarrow 00:47:12.630$ to put them on our lot and later.

NOTE Confidence: 0.788800622142857

00:47:12.630 --> 00:47:14.100 And very likely they had that mutation

NOTE Confidence: 0.788800622142857

00:47:14.100 --> 00:47:15.777 right when they were put on their lot nib,

 $00:47:15.780 \longrightarrow 00:47:18.615$ which is why there's a very little

NOTE Confidence: 0.788800622142857

 $00:47:18.615 \longrightarrow 00:47:22.146$ duration of of benefit for the patient.

NOTE Confidence: 0.788800622142857

 $00:47:22.150 \longrightarrow 00:47:23.690$ So this is a great example for

NOTE Confidence: 0.788800622142857

 $00:47:23.690 \longrightarrow 00:47:25.589$ for in terms of a clinical or

NOTE Confidence: 0.788800622142857

00:47:25.589 --> 00:47:26.769 exogenous source of mutation,

NOTE Confidence: 0.788800622142857

 $00:47:26.770 \longrightarrow 00:47:28.072$ the cisplatin treatment

NOTE Confidence: 0.788800622142857

 $00:47:28.072 \longrightarrow 00:47:29.808$ that they were receiving.

NOTE Confidence: 0.788800622142857

00:47:29.810 --> 00:47:31.794 And let me give you another example that's

NOTE Confidence: 0.788800622142857

 $00{:}47{:}31.794 \dashrightarrow 00{:}47{:}33.880$ about an endogenous change that has an

NOTE Confidence: 0.788800622142857

 $00:47:33.880 \longrightarrow 00:47:35.525$ interesting effect in a very similar way.

NOTE Confidence: 0.788800622142857

 $00:47:35.530 \longrightarrow 00:47:38.146$ So here's another lung cancer case.

NOTE Confidence: 0.788800622142857

 $00:47:38.150 \longrightarrow 00:47:41.320$ This patient was put on her right resection.

NOTE Confidence: 0.788800622142857

00:47:41.320 --> 00:47:43.795 They had a P53 mutation

NOTE Confidence: 0.788800622142857

00:47:43.795 --> 00:47:45.280 already after resection,

NOTE Confidence: 0.788800622142857

 $00:47:45.280 \longrightarrow 00:47:47.088$ but over a much longer period of time.

 $00:47:47.090 \longrightarrow 00:47:48.358$ They were never treated

NOTE Confidence: 0.788800622142857

00:47:48.358 --> 00:47:49.626 with cisplatin a much,

NOTE Confidence: 0.788800622142857

 $00:47:49.630 \longrightarrow 00:47:51.989$ much longer time later they did receive.

NOTE Confidence: 0.788800622142857

00:47:51.990 --> 00:47:55.934 They did get an ESR T790M mutation and

NOTE Confidence: 0.788800622142857

 $00:47:55.934 \longrightarrow 00:47:58.662$ you can see these plots are solid here

NOTE Confidence: 0.788800622142857

 $00:47:58.662 \longrightarrow 00:48:00.692$ meaning that the mutational process of

NOTE Confidence: 0.788800622142857

 $00{:}48{:}00.692 \dashrightarrow 00{:}48{:}03.265$ interest that I wanted to talk about you

NOTE Confidence: 0.788800622142857

 $00{:}48{:}03.265 \dashrightarrow 00{:}48{:}05.400$ know hasn't happened at all here yet.

NOTE Confidence: 0.788800622142857

 $00:48:05.400 \longrightarrow 00:48:07.533$ And then you can see unfortunately

NOTE Confidence: 0.788800622142857

 $00:48:07.533 \longrightarrow 00:48:09.304$ later on they were they were moved

NOTE Confidence: 0.788800622142857

 $00{:}48{:}09.304 \dashrightarrow 00{:}48{:}10.667$ to Avastin or not unfortunately

NOTE Confidence: 0.788800622142857

 $00:48:10.667 \longrightarrow 00:48:12.293$ movement they were moved to Avastin.

NOTE Confidence: 0.788800622142857

00:48:12.300 --> 00:48:14.500 It wasn't unfortunate necessarily

NOTE Confidence: 0.788800622142857

 $00:48:14.500 \longrightarrow 00:48:16.700$ but Erlotinib was discontinued.

NOTE Confidence: 0.788800622142857

00:48:16.700 --> 00:48:19.478 They were given permatex have been

NOTE Confidence: 0.788800622142857

 $00:48:19.478 \longrightarrow 00:48:22.319$ carboplatin late in latent therapy but.

 $00:48:22.320 \longrightarrow 00:48:24.102$ But the divergence,

NOTE Confidence: 0.788800622142857

 $00:48:24.102 \longrightarrow 00:48:26.478$ but they're metastatic tumors

NOTE Confidence: 0.788800622142857

00:48:26.478 --> 00:48:28.576 started genetically diverging about

NOTE Confidence: 0.788800622142857

 $00:48:28.576 \longrightarrow 00:48:30.156$ two years before their death.

NOTE Confidence: 0.788800622142857

 $00:48:30.160 \longrightarrow 00:48:32.437$ And the thing that I just want to emphasize

NOTE Confidence: 0.788800622142857

00:48:32.437 --> 00:48:35.258 is here is a continuum B1 mutation S37C,

NOTE Confidence: 0.788800622142857

 $00:48:35.258 \longrightarrow 00:48:39.248$ which is known to induce.

NOTE Confidence: 0.788800622142857

 $00:48:39.250 \longrightarrow 00:48:39.390$ Yeah.

NOTE Confidence: 0.790621141724138

 $00:48:41.970 \longrightarrow 00:48:43.650$ Defects in homologous recombination

NOTE Confidence: 0.790621141724138

 $00{:}48{:}43.650 \dashrightarrow 00{:}48{:}46.986$ based mutations and you can see in the

NOTE Confidence: 0.790621141724138

 $00:48:46.986 \longrightarrow 00:48:48.866$ descendant lineages the increased amount

NOTE Confidence: 0.790621141724138

 $00:48:48.866 \longrightarrow 00:48:51.815$ of that kind of mutation occurring after

NOTE Confidence: 0.790621141724138

 $00{:}48{:}51.815 \dashrightarrow 00{:}48{:}54.010$ continuing 1B stinging B1 mutation.

NOTE Confidence: 0.790621141724138

 $00{:}48{:}54.010 \dashrightarrow 00{:}48{:}56.054$ So this is an endogenous process that

NOTE Confidence: 0.790621141724138

 $00:48:56.054 \longrightarrow 00:48:58.310$ was started by a mutation that we can

 $00:48:58.310 \longrightarrow 00:49:00.396$ then track again down to the individual

NOTE Confidence: 0.790621141724138

 $00{:}49{:}00.396 \dashrightarrow 00{:}49{:}02.520$ branch where the mutations are occurring

NOTE Confidence: 0.790621141724138

 $00:49:02.520 \longrightarrow 00:49:04.490$ and how many of them are caused.

NOTE Confidence: 0.790621141724138

 $00:49:04.490 \longrightarrow 00:49:06.884$ And then from then on there's a lot of

NOTE Confidence: 0.790621141724138

00:49:06.884 --> 00:49:09.069 cutting and B1 mutation in these tumors,

NOTE Confidence: 0.790621141724138

 $00:49:09.070 \longrightarrow 00:49:10.280$ but not in the spleen.

NOTE Confidence: 0.790621141724138

00:49:10.280 --> 00:49:10.637 Interesting.

NOTE Confidence: 0.790621141724138

00:49:10.637 --> 00:49:12.422 That's an interesting story here

NOTE Confidence: 0.790621141724138

 $00:49:12.422 \longrightarrow 00:49:14.890$ is that this could be 1 mutation

NOTE Confidence: 0.790621141724138

 $00:49:14.890 \longrightarrow 00:49:17.589$ occurred and led to all the metastases

NOTE Confidence: 0.790621141724138

 $00:49:17.589 \longrightarrow 00:49:19.774$ to all these other tissues.

NOTE Confidence: 0.790621141724138

 $00:49:19.780 \longrightarrow 00:49:21.322$ The one tissue that had a

NOTE Confidence: 0.790621141724138

 $00:49:21.322 \longrightarrow 00:49:22.686$ metastasis that was not continuing

NOTE Confidence: 0.790621141724138

 $00:49:22.686 \longrightarrow 00:49:24.618$ to be 1 mutated was the spleen,

NOTE Confidence: 0.790621141724138

 $00:49:24.620 \longrightarrow 00:49:27.260$ which is very interesting because Canadian

NOTE Confidence: 0.790621141724138

00:49:27.260 --> 00:49:29.020 B1 mutation causes vascularization.

 $00:49:29.020 \longrightarrow 00:49:30.420$ The spleen is already quite

NOTE Confidence: 0.790621141724138

 $00:49:30.420 \longrightarrow 00:49:30.980$ highly vascularized,

NOTE Confidence: 0.790621141724138

 $00:49:30.980 \longrightarrow 00:49:32.108$ so it may not have been

NOTE Confidence: 0.790621141724138

 $00:49:32.108 \longrightarrow 00:49:32.860$ needed for the spleen,

NOTE Confidence: 0.790621141724138

 $00:49:32.860 \longrightarrow 00:49:35.009$ whereas it may have been more important

NOTE Confidence: 0.790621141724138

 $00:49:35.009 \longrightarrow 00:49:37.559$ to the cancer for the rest of the tumors.

NOTE Confidence: 0.790621141724138 00:49:37.560 --> 00:49:38.128 All right, NOTE Confidence: 0.790621141724138

 $00:49:38.128 \longrightarrow 00:49:40.116$ I've sort of gone through all of

NOTE Confidence: 0.790621141724138

 $00:49:40.116 \longrightarrow 00:49:41.826$ what I wanted to talk about.

NOTE Confidence: 0.790621141724138

 $00:49:41.830 \longrightarrow 00:49:43.874$ Today, in terms of introducing you to

NOTE Confidence: 0.790621141724138

00:49:43.874 --> 00:49:46.599 this way of actually trying to understand,

NOTE Confidence: 0.790621141724138 00:49:46.600 --> 00:49:47.466 you know, NOTE Confidence: 0.790621141724138

 $00:49:47.466 \longrightarrow 00:49:49.692$ why an individual tumor is

NOTE Confidence: 0.790621141724138

00:49:49.692 --> 00:49:51.660 has been made oncogenic.

NOTE Confidence: 0.790621141724138

 $00{:}49{:}51.660 \dashrightarrow 00{:}49{:}53.420$ I hope that I've at least been able

 $00:49:53.420 \longrightarrow 00:49:55.188$ to argue that the logic behind what

NOTE Confidence: 0.790621141724138

 $00:49:55.188 \longrightarrow 00:49:56.997$ we're doing is sound and that the

NOTE Confidence: 0.790621141724138

 $00:49:56.997 \longrightarrow 00:49:58.917$ process that we're doing is a sound way

NOTE Confidence: 0.790621141724138

00:49:58.920 --> 00:50:00.859 of sort of attributing that cancer effect,

NOTE Confidence: 0.790621141724138

 $00:50:00.860 \longrightarrow 00:50:02.165$ at least as regards those

NOTE Confidence: 0.790621141724138

00:50:02.165 --> 00:50:02.948 single nucleotide variants,

NOTE Confidence: 0.790621141724138

 $00{:}50{:}02.950 \dashrightarrow 00{:}50{:}04.980$ which are what we mostly focus on.

NOTE Confidence: 0.790621141724138

00:50:04.980 --> 00:50:06.858 But where we don't, you know,

NOTE Confidence: 0.790621141724138

 $00:50:06.860 \longrightarrow 00:50:08.976$ we don't know whether that's 10% or 90%

NOTE Confidence: 0.790621141724138

 $00:50:08.976 \longrightarrow 00:50:11.832$ of the reason why genetically tumors are.

NOTE Confidence: 0.790621141724138

 $00{:}50{:}11.840 \dashrightarrow 00{:}50{:}12.788$ Because we don't know that yet.

NOTE Confidence: 0.790621141724138

00:50:12.790 --> 00:50:13.802 But regardless,

NOTE Confidence: 0.790621141724138

 $00:50:13.802 \longrightarrow 00:50:17.850$ if we look at that single nucleotide effect,

NOTE Confidence: 0.790621141724138

 $00:50:17.850 \longrightarrow 00:50:19.670$ we now can sort of deconvolve that.

NOTE Confidence: 0.790621141724138

00:50:19.670 --> 00:50:21.890 And I'm very curious if anyone

NOTE Confidence: 0.790621141724138

 $00{:}50{:}21.890 \dashrightarrow 00{:}50{:}24.009$ has thoughts to share with me.

 $00:50:24.010 \longrightarrow 00:50:27.349$ You know what how this information could

NOTE Confidence: 0.790621141724138

 $00:50:27.349 \longrightarrow 00:50:29.550$ be used for the benefit of patients,

NOTE Confidence: 0.790621141724138

 $00{:}50{:}29.550 \dashrightarrow 00{:}50{:}30.710$ for the knowledge of patients,

NOTE Confidence: 0.790621141724138

 $00:50:30.710 \longrightarrow 00:50:33.054$ but also as I mentioned in the later

NOTE Confidence: 0.790621141724138

00:50:33.054 --> 00:50:35.272 part of my talk in in understanding

NOTE Confidence: 0.790621141724138

 $00:50:35.272 \longrightarrow 00:50:37.820$ better what our therapies are doing to

NOTE Confidence: 0.790621141724138

00:50:37.890 --> 00:50:39.955 patients over time as well and ways

NOTE Confidence: 0.790621141724138

 $00{:}50{:}39.955 \dashrightarrow 00{:}50{:}42.669$ that we can ideally order our therapies.

NOTE Confidence: 0.790621141724138

 $00:50:42.670 \longrightarrow 00:50:45.614$ So that we avoid the evolution of the

NOTE Confidence: 0.790621141724138

 $00:50:45.614 \longrightarrow 00:50:47.957$ resistance that we're trying to avoid,

NOTE Confidence: 0.790621141724138

 $00:50:47.960 \longrightarrow 00:50:50.078$ which is so clearly evidenced in

NOTE Confidence: 0.790621141724138

 $00{:}50{:}50.078 \dashrightarrow 00{:}50{:}52.583$ that one case with the cisplatin

NOTE Confidence: 0.790621141724138

 $00{:}50{:}52.583 \dashrightarrow 00{:}50{:}54.119$ and relative treatment.

NOTE Confidence: 0.790621141724138

 $00:50:54.120 \longrightarrow 00:50:56.076$ Thanks very much for your attention.

NOTE Confidence: 0.790621141724138

 $00:50:56.080 \longrightarrow 00:50:57.778$ I want to thank very much.

00:50:57.780 --> 00:50:59.628 Vincent Cantaro who was a postdoc in my

NOTE Confidence: 0.790621141724138

 $00{:}50{:}59.628 {\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}}{\:\raisebox{--}{\text{--}}} 00{:}51{:}01.959$ lab is now a professor at Emmanuel College,

NOTE Confidence: 0.790621141724138

 $00:51:01.960 \longrightarrow 00:51:04.780$ remains a a vibrant and

NOTE Confidence: 0.790621141724138

 $00:51:04.780 \longrightarrow 00:51:07.036$ wonderful collaborator of mine.

NOTE Confidence: 0.790621141724138

00:51:07.040 --> 00:51:08.960 I really like working with him.

NOTE Confidence: 0.790621141724138

00:51:08.960 --> 00:51:10.640 It's been incredibly productive to continue

NOTE Confidence: 0.790621141724138

 $00:51:10.640 \dashrightarrow 00:51:13.110$ to do so and I'm really delighted that.

NOTE Confidence: 0.790621141724138

00:51:13.110 --> 00:51:15.594 He's been able to do so despite a very

NOTE Confidence: 0.790621141724138

00:51:15.594 --> 00:51:18.070 heavy teaching load at Emmanuel College.

NOTE Confidence: 0.790621141724138

00:51:18.070 --> 00:51:20.688 Jeff Mandel over here in the audience,

NOTE Confidence: 0.790621141724138

 $00{:}51{:}20.690 \dashrightarrow 00{:}51{:}22.440$ graduate student working on the

NOTE Confidence: 0.790621141724138

 $00:51:22.440 \longrightarrow 00:51:23.840$ cancer effect size calculations

NOTE Confidence: 0.790621141724138

 $00:51:23.840 \longrightarrow 00:51:25.807$ and the machinery underlying that.

NOTE Confidence: 0.790621141724138

 $00:51:25.810 \longrightarrow 00:51:27.602$ Nick Fisk who's worked on a lot

NOTE Confidence: 0.79062114172413800:51:27.602 --> 00:51:28.370 of the tree

NOTE Confidence: 0.866059358

 $00:51:28.437 \longrightarrow 00:51:29.927$ based analysis in my lab,

 $00:51:29.930 \longrightarrow 00:51:31.848$ including those last ones that I mentioned.

NOTE Confidence: 0.866059358

 $00:51:31.850 \longrightarrow 00:51:33.500$ Everyone else in the town's lab,

NOTE Confidence: 0.866059358

 $00:51:33.500 \longrightarrow 00:51:34.460$ they're also great.

NOTE Confidence: 0.866059358

00:51:34.460 --> 00:51:36.380 I didn't specifically mention their work.

NOTE Confidence: 0.866059358

 $00:51:36.380 \longrightarrow 00:51:38.084$ We've got interesting work on epistasis

NOTE Confidence: 0.866059358

 $00:51:38.084 \longrightarrow 00:51:40.126$ and all kinds of other things that

NOTE Confidence: 0.866059358

00:51:40.126 --> 00:51:41.830 that I really think is outstanding

NOTE Confidence: 0.866059358

 $00:51:41.830 \longrightarrow 00:51:43.640$ and should be really interesting.

NOTE Confidence: 0.866059358

 $00:51:43.640 \longrightarrow 00:51:45.160$ But so all the Members,

NOTE Confidence: 0.866059358

 $00:51:45.160 \longrightarrow 00:51:46.100$ it's a great group.

NOTE Confidence: 0.866059358

00:51:46.100 --> 00:51:48.039 Also I want to thank the NIH, NIDCR,

NOTE Confidence: 0.866059358

 $00{:}51{:}48.039 \dashrightarrow 00{:}51{:}49.852$ Yale support and head and neck is

NOTE Confidence: 0.866059358

 $00{:}51{:}49.852 \dashrightarrow 00{:}51{:}51.508$ a great community and I really

NOTE Confidence: 0.866059358

00:51:51.508 --> 00:51:53.907 enjoy being part of it and and it

NOTE Confidence: 0.866059358

00:51:53.907 --> 00:51:55.652 also provides a substantial amount

00:51:55.652 --> 00:51:58.069 of my funding for cancer work.

NOTE Confidence: 0.866059358

 $00{:}51{:}58.070 \dashrightarrow 00{:}51{:}59.498$ So thank you very much and I

NOTE Confidence: 0.866059358

 $00:51:59.498 \longrightarrow 00:52:00.997$ would love to take any questions

NOTE Confidence: 0.866059358

 $00:52:00.997 \longrightarrow 00:52:02.497$ or hear any thoughts, comments,

NOTE Confidence: 0.866059358

 $00:52:02.497 \longrightarrow 00:52:04.819$ etcetera from anyone in the audience.

NOTE Confidence: 0.749719333571429

00:52:11.060 --> 00:52:13.076 Jeff, I think you actually have

NOTE Confidence: 0.749719333571429

00:52:13.076 --> 00:52:15.366 an amazing talent to make really

NOTE Confidence: 0.749719333571429

 $00:52:15.366 \longrightarrow 00:52:16.978$ complex things, explain them in

NOTE Confidence: 0.749719333571429

 $00{:}52{:}16.978 {\:{\circ}{\circ}{\circ}}>00{:}52{:}19.025$ a very simple and logical way.

NOTE Confidence: 0.749719333571429

 $00:52:19.025 \longrightarrow 00:52:21.560$ Do we have a microphone so,

NOTE Confidence: 0.749719333571429

 $00:52:21.560 \longrightarrow 00:52:23.604$ so that people could actually ask questions?

NOTE Confidence: 0.78279528

00:52:27.170 --> 00:52:28.050 Oh, OK.

NOTE Confidence: 0.66808236

 $00:52:36.840 \longrightarrow 00:52:38.966$ OK. Amazing work.

NOTE Confidence: 0.66808236

 $00:52:38.966 \longrightarrow 00:52:41.701$ Jeff I just wanted to ask if you could

NOTE Confidence: 0.66808236

 $00:52:41.701 \longrightarrow 00:52:43.516$ address how you handle commutations

NOTE Confidence: 0.66808236

 $00{:}52{:}43.516 \dashrightarrow 00{:}52{:}46.229$ when you look at cancer effect size.

00:52:46.230 --> 00:52:47.808 And you know I'm thinking of

NOTE Confidence: 0.66808236

 $00:52:47.808 \longrightarrow 00:52:49.536$ this finding that we haven't had

NOTE Confidence: 0.66808236

 $00:52:49.536 \longrightarrow 00:52:51.478$ neck cancer where P53 mutation is

NOTE Confidence: 0.66808236

00:52:51.478 --> 00:52:53.830 truncating if you don't have CDK into

NOTE Confidence: 0.66808236

 $00:52:53.896 \longrightarrow 00:52:56.280$ a mutated and when you when you have

NOTE Confidence: 0.66808236

 $00{:}52{:}56.280 \rightarrow 00{:}52{:}58.586$ a mutation in the DNA binding domain,

NOTE Confidence: 0.66808236

 $00:52:58.590 \longrightarrow 00:53:00.790$ it seems like you need the second mutation.

NOTE Confidence: 0.66808236

 $00:53:00.790 \longrightarrow 00:53:04.350$ So how do you handle that and then I guess

NOTE Confidence: 0.66808236

 $00{:}53{:}04.441 \dashrightarrow 00{:}53{:}07.350$ also when you have P53 mutations or.

NOTE Confidence: 0.66808236

 $00{:}53{:}07.350 \dashrightarrow 00{:}53{:}10.110$ CDK into a mutations or whatever.

NOTE Confidence: 0.66808236

 $00:53:10.110 \longrightarrow 00:53:13.379$ Does that muddy your signatures at all?

NOTE Confidence: 0.66808236

 $00:53:13.380 \longrightarrow 00:53:18.340$ You know to the to the mutational effects of.

NOTE Confidence: 0.66808236

 $00{:}53{:}18.340 \dashrightarrow 00{:}53{:}20.290$ Losing control of of cell cycle

NOTE Confidence: 0.66808236

 $00:53:20.290 \longrightarrow 00:53:21.265$ and DNA repair.

NOTE Confidence: 0.851854498333333

 $00:53:22.780 \longrightarrow 00:53:24.748$ This is a little more straightforward.

00:53:24.750 --> 00:53:26.870 Does it muddy things when things get changed?

NOTE Confidence: 0.851854498333333

 $00{:}53{:}26.870 \dashrightarrow 00{:}53{:}29.014$ Yes, it does in the sense that there

NOTE Confidence: 0.851854498333333

 $00:53:29.014 \longrightarrow 00:53:31.215$ is a temporal difference, right,

NOTE Confidence: 0.851854498333333

 $00:53:31.215 \longrightarrow 00:53:32.925$ between what was happening before that

NOTE Confidence: 0.851854498333333

 $00:53:32.925 \longrightarrow 00:53:34.929$ change happened and what happened afterwards.

NOTE Confidence: 0.851854498333333

 $00:53:34.930 \longrightarrow 00:53:37.606$ And our resolution for understanding those

NOTE Confidence: 0.851854498333333

 $00:53:37.606 \longrightarrow 00:53:39.856$ temporal differences is somewhat weak, right.

NOTE Confidence: 0.851854498333333

 $00:53:39.856 \longrightarrow 00:53:41.720$ So generally, if we have a lot of

NOTE Confidence: 0.851854498333333

00:53:41.773 --> 00:53:43.749 samples like we had in those two cases,

NOTE Confidence: 0.851854498333333

 $00:53:43.750 \longrightarrow 00:53:45.838$ we can sort of piece apart when things

NOTE Confidence: 0.851854498333333

 $00{:}53{:}45.838 \dashrightarrow 00{:}53{:}48.164$ happened in a nice way and we'll be able

NOTE Confidence: 0.851854498333333

 $00:53:48.164 \longrightarrow 00:53:50.068$ to understand those sorts of differences.

NOTE Confidence: 0.851854498333333

 $00:53:50.070 \longrightarrow 00:53:51.862$ But when we're just looking at tumor

NOTE Confidence: 0.851854498333333

00:53:51.862 --> 00:53:53.220 Genesis to resection and we have.

NOTE Confidence: 0.851854498333333

 $00:53:53.220 \longrightarrow 00:53:55.306$ This association then we have to use

NOTE Confidence: 0.851854498333333

 $00{:}53{:}55.306 \dashrightarrow 00{:}53{:}57.628$ very large numbers to get sort of

 $00:53:57.628 \longrightarrow 00:53:58.996$ statistical associations to understand

NOTE Confidence: 0.851854498333333

 $00:53:58.996 \longrightarrow 00:54:00.820$ that sort of ordering process.

NOTE Confidence: 0.851854498333333

 $00:54:00.820 \longrightarrow 00:54:04.204$ Which gets me to your second question or

NOTE Confidence: 0.851854498333333

00:54:04.204 --> 00:54:07.796 your first question of of commutation which

NOTE Confidence: 0.851854498333333

 $00:54:07.800 \longrightarrow 00:54:09.438$ I have a strong opinion on everything.

NOTE Confidence: 0.851854498333333

 $00:54:09.440 \longrightarrow 00:54:12.372$ So my strong opinion on this is that that

NOTE Confidence: 0.851854498333333

 $00:54:12.372 \longrightarrow 00:54:14.902$ the general genomics approach towards

NOTE Confidence: 0.851854498333333

 $00:54:14.902 \longrightarrow 00:54:18.009$ looking at commutation is is flawed in a

NOTE Confidence: 0.851854498333333

 $00{:}54{:}18.009 \dashrightarrow 00{:}54{:}20.512$ way that is not apparent when you read

NOTE Confidence: 0.851854498333333

 $00:54:20.512 \longrightarrow 00:54:22.972$ all the papers on it and the argument that.

NOTE Confidence: 0.851854498333333

 $00:54:22.972 \longrightarrow 00:54:24.134$ I want to make is that when

NOTE Confidence: 0.851854498333333

00:54:24.134 --> 00:54:25.068 you look at commutation,

NOTE Confidence: 0.851854498333333

 $00{:}54{:}25.070 \dashrightarrow 00{:}54{:}26.500$ you're typically looking at a

NOTE Confidence: 0.851854498333333

 $00:54:26.500 \longrightarrow 00:54:27.358$ very observational thing,

NOTE Confidence: 0.851854498333333

 $00:54:27.360 \longrightarrow 00:54:29.187$ which is like how often is this

 $00:54:29.187 \longrightarrow 00:54:30.978$ one mutated and this one mutated.

NOTE Confidence: 0.851854498333333

 $00{:}54{:}30.980 \dashrightarrow 00{:}54{:}33.808$ So for the same reasons that I

NOTE Confidence: 0.851854498333333

 $00:54:33.808 \longrightarrow 00:54:36.100$ outlined in my talk today,

NOTE Confidence: 0.851854498333333

 $00:54:36.100 \longrightarrow 00:54:38.392$ that there are two reasons why

NOTE Confidence: 0.851854498333333

00:54:38.392 --> 00:54:41.032 you see things mutated, you know,

NOTE Confidence: 0.851854498333333

00:54:41.032 --> 00:54:43.256 underlying mutation or selection.

NOTE Confidence: 0.851854498333333

 $00:54:43.260 \longrightarrow 00:54:44.988$ There are two reasons why things

NOTE Confidence: 0.851854498333333

 $00:54:44.988 \longrightarrow 00:54:45.852$ might be commutated.

NOTE Confidence: 0.851854498333333

 $00:54:45.860 \longrightarrow 00:54:47.135$ They might be commutated because

NOTE Confidence: 0.851854498333333

 $00:54:47.135 \longrightarrow 00:54:48.155$ when you get one,

NOTE Confidence: 0.851854498333333

00:54:48.160 --> 00:54:49.952 the other one is selected and it

NOTE Confidence: 0.851854498333333

 $00:54:49.952 \longrightarrow 00:54:51.667$ really creates a great benefit to

NOTE Confidence: 0.851854498333333

 $00:54:51.667 \longrightarrow 00:54:53.443$ the cell to survive and replicate.

NOTE Confidence: 0.851854498333333

 $00:54:53.450 \longrightarrow 00:54:55.700$ The other reason might be because

NOTE Confidence: 0.851854498333333

00:54:55.700 --> 00:54:58.544 they both have the same underlying

NOTE Confidence: 0.851854498333333

 $00:54:58.544 \longrightarrow 00:54:59.808$ mutational process.

 $00:54:59.810 \longrightarrow 00:55:01.244$ And when you have four orders

NOTE Confidence: 0.851854498333333

 $00:55:01.244 \longrightarrow 00:55:02.494$ of magnitude of difference in

NOTE Confidence: 0.851854498333333

00:55:02.494 --> 00:55:03.739 mutational process site to site,

NOTE Confidence: 0.851854498333333

 $00:55:03.740 \longrightarrow 00:55:05.658$ that can be a very big reason

NOTE Confidence: 0.851854498333333

00:55:05.658 --> 00:55:07.350 why you see commutation.

NOTE Confidence: 0.851854498333333

 $00:55:07.350 \longrightarrow 00:55:09.121$ So commutation is not the signature we

NOTE Confidence: 0.851854498333333

 $00:55:09.121 \longrightarrow 00:55:11.854$ like it to be to say these things are

NOTE Confidence: 0.851854498333333

 $00:55:11.854 \longrightarrow 00:55:13.134$ selected together because sometimes

NOTE Confidence: 0.851854498333333

 $00:55:13.189 \longrightarrow 00:55:15.142$ they may not be even though they're

NOTE Confidence: 0.851854498333333

 $00:55:15.142 \longrightarrow 00:55:18.250$ strongly come come mutated in a data set.

NOTE Confidence: 0.851854498333333

 $00:55:18.250 \longrightarrow 00:55:19.586$ So then how do I deal with it?

NOTE Confidence: 0.85185449833333300:55:19.590 --> 00:55:19.850 Well,

NOTE Confidence: 0.851854498333333

 $00{:}55{:}19.850 \dashrightarrow 00{:}55{:}21.670$ we can take all of the approaches

NOTE Confidence: 0.851854498333333

 $00{:}55{:}21.670 \dashrightarrow 00{:}55{:}23.857$ I told you and we're working on

NOTE Confidence: 0.851854498333333

 $00:55:23.857 \longrightarrow 00:55:25.467$ you know even more sophisticated

00:55:25.525 --> 00:55:27.387 approaches now to try to do this.

NOTE Confidence: 0.851854498333333

 $00{:}55{:}27.390 \dashrightarrow 00{:}55{:}28.766$ I think I have some slides on it,

NOTE Confidence: 0.851854498333333

 $00:55:28.770 \longrightarrow 00:55:30.525$ so I would love to take the time to.

NOTE Confidence: 0.851854498333333

 $00:55:30.530 \longrightarrow 00:55:32.900$ Just quickly introduce it since

NOTE Confidence: 0.851854498333333

 $00:55:32.900 \longrightarrow 00:55:35.900$ they're they're way down here though.

NOTE Confidence: 0.851854498333333

 $00:55:35.900 \longrightarrow 00:55:37.470$ Ah.

NOTE Confidence: 0.851854498333333 00:55:37.470 --> 00:55:37.666 Yeah.

NOTE Confidence: 0.851854498333333

 $00:55:37.666 \longrightarrow 00:55:39.038$ So this is the point that you

NOTE Confidence: 0.851854498333333

 $00{:}55{:}39.038 \dashrightarrow 00{:}55{:}40.807$ that I was just answering to you

NOTE Confidence: 0.851854498333333

00:55:40.807 --> 00:55:42.481 which is mutual exclusivity and Co

NOTE Confidence: 0.851854498333333

 $00:55:42.481 \longrightarrow 00:55:43.971$ occurrence are patterns that are

NOTE Confidence: 0.851854498333333

 $00:55:43.971 \longrightarrow 00:55:45.453$ caused by either commutation or

NOTE Confidence: 0.851854498333333

 $00{:}55{:}45.453 \dashrightarrow 00{:}55{:}46.868$ what I call selective epistasis.

NOTE Confidence: 0.851854498333333

 $00{:}55{:}46.870 \dashrightarrow 00{:}55{:}48.781$ Again I'm using the terminology from my

NOTE Confidence: 0.851854498333333

 $00:55:48.781 \longrightarrow 00:55:49.970$ background and evolutionary biology.

NOTE Confidence: 0.851854498333333

 $00{:}55{:}49.970 \dashrightarrow 00{:}55{:}51.825$ Epistasis meaning 1 gene is having an

 $00:55:51.825 \longrightarrow 00:55:53.572$ effect on another or the mutation in

NOTE Confidence: 0.851854498333333

 $00{:}55{:}53.572 --> 00{:}55{:}55.510$ one gene is having an effect on another.

NOTE Confidence: 0.851854498333333

00:55:55.510 --> 00:55:57.135 So typical approaches have not

NOTE Confidence: 0.851854498333333

00:55:57.135 --> 00:55:58.110 acknowledged the possibility

NOTE Confidence: 0.851854498333333

 $00:55:58.110 \longrightarrow 00:55:58.760$ of commutation

NOTE Confidence: 0.779470155882353

 $00:55:58.810 \longrightarrow 00:56:00.784$ which is a common underlying mutational bias.

NOTE Confidence: 0.779470155882353

 $00:56:00.790 \longrightarrow 00:56:02.288$ That's what I just said to you.

NOTE Confidence: 0.779470155882353

 $00:56:02.290 \longrightarrow 00:56:03.620$ This is a typical slide from I

NOTE Confidence: 0.779470155882353

 $00{:}56{:}03.620 \dashrightarrow 00{:}56{:}05.051$ don't mean to be you know casting

NOTE Confidence: 0.779470155882353

00:56:05.051 --> 00:56:06.563 aspersion on this as I said this

NOTE Confidence: 0.779470155882353

 $00:56:06.563 \longrightarrow 00:56:07.788$ is what everyone pretty much.

NOTE Confidence: 0.779470155882353

 $00:56:07.790 \longrightarrow 00:56:10.436$ Does but but they look for whether

NOTE Confidence: 0.779470155882353

 $00{:}56{:}10.436 \dashrightarrow 00{:}56{:}12.065$ cancers have sequential mutations

NOTE Confidence: 0.779470155882353

 $00{:}56{:}12.065 {\:{\circ}{\circ}{\circ}}>00{:}56{:}14.609$ developed or commutation but we can

NOTE Confidence: 0.779470155882353

 $00:56:14.609 \longrightarrow 00:56:17.027$ actually take those same analysis same

 $00:56:17.027 \longrightarrow 00:56:20.005$ the same data and and deconvolve with

NOTE Confidence: 0.779470155882353

 $00:56:20.005 \longrightarrow 00:56:21.865$ some fairly sophisticated mathematics

NOTE Confidence: 0.779470155882353

 $00:56:21.865 \longrightarrow 00:56:24.840$ that Jorge Alfaro Murillo and I did on

NOTE Confidence: 0.779470155882353

 $00:56:24.840 \longrightarrow 00:56:26.400$ the fluxes mutation rates and scale.

NOTE Confidence: 0.779470155882353

 $00:56:26.400 \longrightarrow 00:56:28.402$ So selection coefficients for up to five

NOTE Confidence: 0.779470155882353

 $00:56:28.402 \longrightarrow 00:56:30.421$ genes and look at what the likelihood

NOTE Confidence: 0.779470155882353

00:56:30.421 --> 00:56:32.405 of individual genes are are to get

NOTE Confidence: 0.779470155882353

 $00:56:32.405 \longrightarrow 00:56:34.061$ mutated what the likelihood Karras is

NOTE Confidence: 0.779470155882353

00:56:34.061 --> 00:56:35.886 going to be muted after P53 etcetera.

NOTE Confidence: 0.779470155882353

 $00:56:35.886 \longrightarrow 00:56:37.920$ So we can look at all of these.

NOTE Confidence: 0.779470155882353

00:56:37.920 --> 00:56:40.128 Figure out how frequently those happen.

NOTE Confidence: 0.779470155882353

 $00:56:40.130 \longrightarrow 00:56:41.594$ So this is the flux which is a

NOTE Confidence: 0.779470155882353

 $00:56:41.594 \longrightarrow 00:56:42.550$ measure of commutation,

NOTE Confidence: 0.779470155882353

 $00:56:42.550 \longrightarrow 00:56:44.054$ essentially the underlying mutation

NOTE Confidence: 0.779470155882353

 $00:56:44.054 \longrightarrow 00:56:46.310$ rates and then the scaled selection

NOTE Confidence: 0.779470155882353

 $00:56:46.363 \longrightarrow 00:56:48.108$ coefficient for the new mutation.

 $00:56:48.110 \longrightarrow 00:56:50.126$ So these are how likely is P53,

NOTE Confidence: 0.779470155882353

 $00:56:50.130 \dashrightarrow 00:56:53.188$ how likely is KSB mutated after PHP 53

NOTE Confidence: 0.779470155882353

 $00:56:53.188 \longrightarrow 00:56:55.740$ and then how likely is it how selected

NOTE Confidence: 0.779470155882353

00:56:55.812 --> 00:56:58.004 is it to have KRS after PMI 50?

NOTE Confidence: 0.779470155882353

00:56:58.010 --> 00:56:59.366 P 53 is a separate measure,

NOTE Confidence: 0.779470155882353

 $00:56:59.370 \longrightarrow 00:57:01.442$ so we can basically take all of those

NOTE Confidence: 0.779470155882353

 $00:57:01.442 \longrightarrow 00:57:03.349$ and look at all of those different

NOTE Confidence: 0.779470155882353

 $00:57:03.349 \longrightarrow 00:57:05.129$ things for up to five or six.

NOTE Confidence: 0.779470155882353

 $00:57:05.130 \longrightarrow 00:57:06.435$ And again there are constraint

NOTE Confidence: 0.779470155882353

00:57:06.435 --> 00:57:08.030 is usually the amount of data.

NOTE Confidence: 0.779470155882353

00:57:08.030 --> 00:57:09.984 We need massive amounts of data

NOTE Confidence: 0.779470155882353

 $00:57:09.984 \longrightarrow 00:57:10.680$ to understand,

NOTE Confidence: 0.779470155882353

 $00{:}57{:}10.680 \dashrightarrow 00{:}57{:}13.256$ like 3 way effects or four way effects.

NOTE Confidence: 0.779470155882353

 $00:57:13.260 \longrightarrow 00:57:15.724$ So you need to have examples of every

NOTE Confidence: 0.779470155882353

 $00:57:15.724 \longrightarrow 00:57:17.564$ possible combination in that data set

 $00:57:17.564 \longrightarrow 00:57:19.316$ and that rapidly exhausts our samples.

NOTE Confidence: 0.779470155882353

 $00:57:19.320 \longrightarrow 00:57:20.208$ But on their hand,

NOTE Confidence: 0.779470155882353

 $00:57:20.208 \longrightarrow 00:57:21.540$ we're getting a lot more data

NOTE Confidence: 0.779470155882353

 $00:57:21.589 \longrightarrow 00:57:23.141$ now and so we're able to do this

NOTE Confidence: 0.779470155882353

 $00:57:23.141 \longrightarrow 00:57:24.460$ with more and more data sets.

NOTE Confidence: 0.779470155882353

 $00:57:24.460 \longrightarrow 00:57:26.124$ Now this is lung cancer and we were

NOTE Confidence: 0.779470155882353

 $00:57:26.124 \longrightarrow 00:57:27.906$ able to do it for these five genes.

NOTE Confidence: 0.662026182

00:57:30.240 --> 00:57:32.508 P53 KSDK, 11 RL, RP1B and.

NOTE Confidence: 0.662026182

00:57:32.508 --> 00:57:34.348 And figure out all their

NOTE Confidence: 0.662026182

 $00:57:34.348 \longrightarrow 00:57:35.820$ relations with each other.

NOTE Confidence: 0.662026182

 $00{:}57{:}35.820 {\:{\circ}{\circ}{\circ}}>00{:}57{:}37.374$ This is maybe an easier way to

NOTE Confidence: 0.662026182

 $00:57:37.374 \longrightarrow 00:57:38.798$ see this instead of a big table,

NOTE Confidence: 0.662026182

 $00:57:38.800 \longrightarrow 00:57:40.040$ which is just what's the

NOTE Confidence: 0.662026182

 $00{:}57{:}40.040 \dashrightarrow 00{:}57{:}41.032$ evolutionary trajectory of them.

NOTE Confidence: 0.662026182

00:57:41.040 --> 00:57:42.528 And again, this is all epistatic,

NOTE Confidence: 0.662026182

 $00:57:42.530 \longrightarrow 00:57:44.588$ like it's all taking into account

 $00:57:44.588 \longrightarrow 00:57:46.170$ that commutation factor and the

NOTE Confidence: 0.662026182

 $00:57:46.170 \longrightarrow 00:57:48.095$ width of the bar is the flux,

NOTE Confidence: 0.662026182

00:57:48.100 --> 00:57:50.011 or how frequently you go from normal

NOTE Confidence: 0.662026182

00:57:50.011 --> 00:57:52.640 to say P53 in this particular case,

NOTE Confidence: 0.662026182

00:57:52.640 --> 00:57:55.514 or LPV one or K Ras or SDK 111.

NOTE Confidence: 0.662026182

 $00:57:55.514 \longrightarrow 00:57:58.139$ And then you can see that if you KS isn't

NOTE Confidence: 0.662026182

00:57:58.139 --> 00:58:00.477 actually that frequent as a first mutation,

NOTE Confidence: 0.662026182

 $00:58:00.480 \longrightarrow 00:58:01.296$ but if you do get it,

NOTE Confidence: 0.662026182

00:58:01.300 --> 00:58:04.140 then you're very likely to get LRP 1B.

NOTE Confidence: 0.662026182

 $00:58:04.140 \longrightarrow 00:58:05.370$ Or SDK 11.

NOTE Confidence: 0.662026182

00:58:05.370 --> 00:58:06.474 If you get P53,

NOTE Confidence: 0.662026182

 $00:58:06.474 \longrightarrow 00:58:07.854$ you're very likely to then

NOTE Confidence: 0.662026182

 $00{:}58{:}07.854 \dashrightarrow 00{:}58{:}09.586$ get LRP 1B as well.

NOTE Confidence: 0.662026182

 $00:58:09.586 \longrightarrow 00:58:11.770$ You're you're you know some probability,

NOTE Confidence: 0.662026182

00:58:11.770 --> 00:58:13.186 but it's not so high of getting curious.

 $00:58:13.190 \longrightarrow 00:58:15.989$ After that you're very likely to get a KRS

NOTE Confidence: 0.662026182

 $00:58:15.989 \longrightarrow 00:58:18.497$ mutation if you have P53 and LRP we want to.

NOTE Confidence: 0.662026182

00:58:18.500 --> 00:58:21.050 One LRP 1B together et cetera.

NOTE Confidence: 0.662026182

 $00:58:21.050 \longrightarrow 00:58:22.868$ So you can you can look at what the

NOTE Confidence: 0.662026182

 $00:58:22.868 \longrightarrow 00:58:24.765$ likely trajectory for a given patient is.

NOTE Confidence: 0.662026182

 $00:58:24.770 \longrightarrow 00:58:26.210$ You could even look at where they are on

NOTE Confidence: 0.662026182

00:58:26.210 --> 00:58:27.686 this trajectory and we haven't done this,

NOTE Confidence: 0.662026182

00:58:27.690 --> 00:58:29.482 but presumably you can figure out what

NOTE Confidence: 0.662026182

 $00{:}58{:}29.482 \dashrightarrow 00{:}58{:}31.034$ their prognosis was based on where

NOTE Confidence: 0.662026182

 $00:58:31.034 \longrightarrow 00:58:32.504$ they were on this diagram etcetera.

NOTE Confidence: 0.662026182

 $00:58:32.510 \longrightarrow 00:58:35.021$ And we have basically a a map of what's

NOTE Confidence: 0.662026182

 $00{:}58{:}35.021 \dashrightarrow 00{:}58{:}37.347$ actually happening to these these patients.

NOTE Confidence: 0.662026182

 $00:58:37.350 \longrightarrow 00:58:39.286$ And then down below in the smaller diagrams,

NOTE Confidence: 0.662026182

00:58:39.290 --> 00:58:40.778 I've just divided this up because

NOTE Confidence: 0.662026182

 $00:58:40.778 \longrightarrow 00:58:42.490$ this is all the fluxes again,

NOTE Confidence: 0.662026182

 $00:58:42.490 \longrightarrow 00:58:44.394$ but let's divide it up into mutation

 $00:58:44.394 \longrightarrow 00:58:45.527$ rates and selection coefficients

NOTE Confidence: 0.662026182

 $00{:}58{:}45.527 \dashrightarrow 00{:}58{:}47.396$ and what you see is the mutation

NOTE Confidence: 0.662026182

 $00:58:47.396 \longrightarrow 00:58:48.710$ rates are here are quite.

NOTE Confidence: 0.662026182

 $00{:}58{:}48.710 \dashrightarrow 00{:}58{:}50.774$ Symmetrical because we haven't

NOTE Confidence: 0.662026182

 $00:58:50.774 \longrightarrow 00:58:52.838$ accounted for things like.

NOTE Confidence: 0.662026182

00:58:52.840 --> 00:58:53.995 Containing 1B mutation,

NOTE Confidence: 0.662026182

 $00:58:53.995 \longrightarrow 00:58:55.920$ changing the mutation rate etcetera.

NOTE Confidence: 0.662026182

 $00:58:55.920 \longrightarrow 00:58:57.152$ In this particular analysis,

NOTE Confidence: 0.662026182

 $00{:}58{:}57.152 \dashrightarrow 00{:}58{:}59.000$ although in principle we can do

NOTE Confidence: 0.662026182

 $00:58:59.054 \longrightarrow 00:59:01.336$ that and then on the right are

NOTE Confidence: 0.662026182

 $00:59:01.336 \longrightarrow 00:59:03.130$ so there's a LRP 1B particularly

NOTE Confidence: 0.662026182

 $00:59:03.130 \longrightarrow 00:59:04.630$ has a very high mutation rate.

NOTE Confidence: 0.662026182

00:59:04.630 --> 00:59:05.845 So it's relatively high frequency

NOTE Confidence: 0.662026182

 $00{:}59{:}05.845 --> 00{:}59{:}07.350$ is not that big a deal,

NOTE Confidence: 0.662026182

 $00:59:07.350 \longrightarrow 00:59:08.628$ although it does seem to have

 $00:59:08.628 \longrightarrow 00:59:09.720$ some selective effect as well.

NOTE Confidence: 0.662026182

 $00:59:09.720 \longrightarrow 00:59:11.169$ And then over here we see the

NOTE Confidence: 0.662026182

 $00{:}59{:}11.169 \dashrightarrow 00{:}59{:}12.516$ selective effects and you can see

NOTE Confidence: 0.662026182

00:59:12.516 --> 00:59:13.656 there's very strong selection for

NOTE Confidence: 0.662026182

00:59:13.660 --> 00:59:16.198 P53 initially is the major selection

NOTE Confidence: 0.662026182

00:59:16.200 --> 00:59:19.126 and yet that exists after LRP 1B

NOTE Confidence: 0.662026182

 $00:59:19.126 \longrightarrow 00:59:23.910$ as well but after after P53 or.

NOTE Confidence: 0.662026182

00:59:23.910 --> 00:59:25.054 LRP 1B and P33,

NOTE Confidence: 0.662026182

 $00{:}59{:}25.054 --> 00{:}59{:}26.770$ then we're very likely to get

NOTE Confidence: 0.662026182

00:59:26.837 --> 00:59:28.440 this Karas mutation, etcetera.

NOTE Confidence: 0.662026182

 $00:59:28.440 \longrightarrow 00:59:30.750$ So you can really understand what the

NOTE Confidence: 0.662026182

 $00:59:30.750 \longrightarrow 00:59:32.520$ relative effect of each of these is.

NOTE Confidence: 0.435518738

 $00:59:33.970 \longrightarrow 00:59:37.390$ Trajectories after the sample size.

NOTE Confidence: 0.435518738

 $00:59:37.390 \longrightarrow 00:59:38.398$ That's a good question.

NOTE Confidence: 0.860814934615385

 $00:59:39.310 \longrightarrow 00:59:40.806$ I haven't done the study that I'd like

NOTE Confidence: 0.860814934615385

 $00:59:40.806 \longrightarrow 00:59:42.794$ to do to answer that, which would be

00:59:42.794 --> 00:59:44.642 like do some very massive analysis.

NOTE Confidence: 0.860814934615385

 $00:59:44.650 \longrightarrow 00:59:46.722$ It's actually a lot of computation to like

NOTE Confidence: 0.860814934615385

 $00:59:46.722 \dashrightarrow 00:59:48.948$ do that 1000 times subsampling et cetera.

NOTE Confidence: 0.860814934615385

00:59:48.950 --> 00:59:51.480 But what I have done is just do the analysis,

NOTE Confidence: 0.860814934615385

 $00:59:51.480 \longrightarrow 00:59:53.320$ you know, with one data set and then

NOTE Confidence: 0.860814934615385

 $00{:}59{:}53.320 \dashrightarrow 00{:}59{:}55.313$ add more data sets and it seems

NOTE Confidence: 0.860814934615385

 $00:59:55.313 \longrightarrow 00:59:56.793$ quite stable from that perspective.

NOTE Confidence: 0.860814934615385

 $00{:}59{:}56.800 \longrightarrow 00{:}59{:}58.258$ That's not really the same because

NOTE Confidence: 0.860814934615385

 $00:59:58.258 \longrightarrow 00:59:59.455$ we're not subtracting out the

NOTE Confidence: 0.860814934615385

 $00:59:59.455 \longrightarrow 01:00:00.694$ first data set when we do that.

NOTE Confidence: 0.860814934615385

01:00:00.700 --> 01:00:03.337 But but it's not like it varies all over

NOTE Confidence: 0.860814934615385

 $01:00:03.337 \longrightarrow 01:00:05.914$ the place and the stability of course is

NOTE Confidence: 0.860814934615385

 $01:00:05.914 \longrightarrow 01:00:07.448$ proportional to the prevalence, right?

NOTE Confidence: 0.860814934615385

 $01:00:07.448 \longrightarrow 01:00:08.560$ Of that particular mutation,

NOTE Confidence: 0.860814934615385

 $01:00:08.560 \longrightarrow 01:00:09.970$ the mutations that are really

 $01:00:09.970 \longrightarrow 01:00:11.020$ highly prevalence, you know,

NOTE Confidence: 0.860814934615385

 $01:00:11.020 \longrightarrow 01:00:13.231$ they stay very stable because we've got a lot

NOTE Confidence: 0.860814934615385

 $01:00:13.231 \longrightarrow 01:00:15.119$ of examples of them with the other genes.

NOTE Confidence: 0.860814934615385

01:00:15.120 --> 01:00:16.688 As soon as you get the lower prevalence,

NOTE Confidence: 0.860814934615385

 $01:00:16.690 \longrightarrow 01:00:18.550$ it's it's a lot iffier.

NOTE Confidence: 0.860814934615385

 $01:00:18.550 \longrightarrow 01:00:18.819$ So.

NOTE Confidence: 0.860814934615385

 $01:00:18.819 \longrightarrow 01:00:20.971$ So really this can only be used right

NOTE Confidence: 0.860814934615385

 $01:00:20.971 \longrightarrow 01:00:23.316$ now for these for the most prevalent

NOTE Confidence: 0.860814934615385

 $01:00:23.316 \longrightarrow 01:00:25.199$ kinds of mutations that you see.

NOTE Confidence: 0.860814934615385

 $01:00:25.200 \longrightarrow 01:00:27.378$ And typically we are for instance

NOTE Confidence: 0.860814934615385

 $01{:}00{:}27.378 \dashrightarrow 01{:}00{:}29.715$ assembling all the mutations in a given

NOTE Confidence: 0.860814934615385

01:00:29.715 --> 01:00:31.640 gene as one kind of mutation because

NOTE Confidence: 0.860814934615385

 $01:00:31.701 \longrightarrow 01:00:33.805$ we need that sample size to do that,

NOTE Confidence: 0.860814934615385

 $01:00:33.810 \longrightarrow 01:00:35.462$ which is something that in my other

NOTE Confidence: 0.860814934615385

01:00:35.462 --> 01:00:37.291 research I usually avoid because I think

NOTE Confidence: 0.860814934615385

 $01:00:37.291 \longrightarrow 01:00:38.893$ it's really important to understand it.

 $01:00:38.900 \longrightarrow 01:00:40.900$ Different sites have different effects.

NOTE Confidence: 0.860814934615385

01:00:40.900 --> 01:00:41.170 So

NOTE Confidence: 0.813187945714286

01:00:42.020 --> 01:00:44.348 one thing that I didn't

NOTE Confidence: 0.813187945714286

 $01:00:44.348 \longrightarrow 01:00:46.072$ see certain probably this.

NOTE Confidence: 0.813187945714286

 $01:00:46.072 \longrightarrow 01:00:49.180$ So you can calculate an additional process

NOTE Confidence: 0.813187945714286

 $01:00:49.252 \longrightarrow 01:00:51.832$ contribution to to the privatization

NOTE Confidence: 0.813187945714286

 $01:00:51.832 \longrightarrow 01:00:53.896$ in particular individual cases.

NOTE Confidence: 0.813187945714286

 $01:00:53.900 \longrightarrow 01:00:55.972$ But what happens if you caused the

NOTE Confidence: 0.813187945714286

01:00:55.972 --> 01:00:57.464 cases and obviously you should be able

NOTE Confidence: 0.813187945714286

 $01:00:57.464 \longrightarrow 01:00:59.184$ to sell it off lung cancers related

NOTE Confidence: 0.813187945714286

01:00:59.184 --> 01:01:01.277 to smoking and those who don't and

NOTE Confidence: 0.813187945714286

 $01:01:01.277 \longrightarrow 01:01:02.853$ that would be a trial thing to do.

NOTE Confidence: 0.813187945714286

 $01{:}01{:}02.860 \dashrightarrow 01{:}01{:}04.684$ But could you do the same and create

NOTE Confidence: 0.813187945714286

 $01:01:04.684 \longrightarrow 01:01:06.866$ a new classification for example for

NOTE Confidence: 0.813187945714286

 $01:01:06.866 \longrightarrow 01:01:08.663$ initial cancer, breast cancer that

 $01:01:08.663 \longrightarrow 01:01:10.910$ are going to aging and the other?

NOTE Confidence: 0.813187945714286

01:01:10.910 --> 01:01:12.450 By looking at them separately,

NOTE Confidence: 0.813187945714286

01:01:12.450 --> 01:01:14.898 you might get some idea about

NOTE Confidence: 0.813187945714286

01:01:14.898 --> 01:01:16.122 what's actually causing.

NOTE Confidence: 0.813187945714286

 $01:01:16.130 \longrightarrow 01:01:17.460$ The.

NOTE Confidence: 0.813187945714286

01:01:17.460 --> 01:01:18.890 The Unknown edition signature.

NOTE Confidence: 0.88755983

 $01:01:21.850 \longrightarrow 01:01:23.326$ Yeah, I definitely think you

NOTE Confidence: 0.88755983

 $01:01:23.326 \longrightarrow 01:01:25.458$ could cluster them. I think you

NOTE Confidence: 0.877339712142857

 $01:01:25.470 \longrightarrow 01:01:28.175$ know the you're reducing the

NOTE Confidence: 0.877339712142857

01:01:28.175 --> 01:01:31.314 dimensionality of the data when you

NOTE Confidence: 0.877339712142857

 $01:01:31.314 \longrightarrow 01:01:33.845$ go from the raw data back to the

NOTE Confidence: 0.877339712142857

 $01:01:33.845 \longrightarrow 01:01:36.227$ processes and so you have a reduced

NOTE Confidence: 0.877339712142857

 $01:01:36.227 \longrightarrow 01:01:38.207$ dimensionality of that raw data.

NOTE Confidence: 0.877339712142857

 $01:01:38.210 \longrightarrow 01:01:39.634$ And then you're and then if you were

NOTE Confidence: 0.877339712142857

 $01:01:39.634 \longrightarrow 01:01:40.828$ to cluster on the basis of this,

NOTE Confidence: 0.877339712142857

 $01:01:40.830 \longrightarrow 01:01:42.096$ you would be taking that reduced

 $01{:}01{:}42.096 \dashrightarrow 01{:}01{:}43.171$ dimensionality data and trying to

NOTE Confidence: 0.877339712142857

 $01:01:43.171 \longrightarrow 01:01:44.146$ say does that predict something.

NOTE Confidence: 0.877339712142857

01:01:44.150 --> 01:01:46.094 So I I think from a machine learning

NOTE Confidence: 0.877339712142857

01:01:46.094 --> 01:01:47.712 standpoint you might want to just go

NOTE Confidence: 0.877339712142857

01:01:47.712 --> 01:01:49.409 back to that broad data in some way,

NOTE Confidence: 0.877339712142857

 $01:01:49.410 \longrightarrow 01:01:50.598$ but there might be some way

NOTE Confidence: 0.877339712142857

 $01:01:50.598 \longrightarrow 01:01:51.390$ of thinking about it.

NOTE Confidence: 0.877339712142857

 $01:01:51.390 \longrightarrow 01:01:52.182$ That I say that,

NOTE Confidence: 0.877339712142857

 $01:01:52.182 \longrightarrow 01:01:53.370$ but then I also think there's

NOTE Confidence: 0.877339712142857

 $01:01:53.420 \longrightarrow 01:01:54.370$ a second part of that,

NOTE Confidence: 0.877339712142857

01:01:54.370 --> 01:01:56.854 which is that I do think you do better

NOTE Confidence: 0.877339712142857

01:01:56.854 --> 01:01:59.050 looking at actual biological processes,

NOTE Confidence: 0.877339712142857

 $01{:}01{:}59.050 \dashrightarrow 01{:}02{:}00.796$ even if it involves some reduction

NOTE Confidence: 0.877339712142857 01:02:00.796 --> 01:02:01.669 of the data, NOTE Confidence: 0.877339712142857

01:02:01.670 --> 01:02:03.026 because it simplifies the data in

 $01:02:03.026 \longrightarrow 01:02:04.844$ a way that means you don't go off

NOTE Confidence: 0.877339712142857

 $01{:}02{:}04.844 \dashrightarrow 01{:}02{:}06.146$ on these random tangents of all

NOTE Confidence: 0.877339712142857

 $01:02:06.192 \longrightarrow 01:02:07.728$ the noisy stuff you're looking at.

NOTE Confidence: 0.877339712142857

 $01:02:07.730 \longrightarrow 01:02:08.990$ So, so there's, there's a,

NOTE Confidence: 0.877339712142857

 $01:02:08.990 \longrightarrow 01:02:10.775$ I guess there's a tension I think

NOTE Confidence: 0.877339712142857

 $01:02:10.775 \longrightarrow 01:02:12.786$ you should be wary of in doing that,

NOTE Confidence: 0.877339712142857

01:02:12.790 --> 01:02:14.286 but I don't see any reason you couldn't

NOTE Confidence: 0.877339712142857

01:02:14.286 --> 01:02:15.781 do that and and it would probably

NOTE Confidence: 0.877339712142857

 $01:02:15.781 \longrightarrow 01:02:17.140$ be highly predictive in some cases.

NOTE Confidence: 0.877339712142857

01:02:17.140 --> 01:02:18.605 You're probably going to see

NOTE Confidence: 0.877339712142857

01:02:18.605 --> 01:02:20.070 most skin cancers very easily,

NOTE Confidence: 0.877339712142857

01:02:20.070 --> 01:02:21.390 you know, predictive that way.

NOTE Confidence: 0.877339712142857

 $01:02:21.390 \longrightarrow 01:02:24.558$ Because they're just UV all over the place.

NOTE Confidence: 0.877339712142857

 $01:02:24.560 \longrightarrow 01:02:26.440$ Some other cancers are probably

NOTE Confidence: 0.877339712142857

01:02:26.440 --> 01:02:28.761 quite hard to distinguish one from

NOTE Confidence: 0.877339712142857

 $01:02:28.761 \longrightarrow 01:02:31.017$ the other just by the mutational

 $01:02:31.017 \longrightarrow 01:02:32.950$ processes that underlie their cause,

NOTE Confidence: 0.877339712142857

 $01:02:32.950 \longrightarrow 01:02:35.694$ and so I could imagine doing that.

NOTE Confidence: 0.877339712142857

 $01:02:35.700 \longrightarrow 01:02:36.870$ We haven't done anything like that.

NOTE Confidence: 0.7372582

 $01:02:40.800 \longrightarrow 01:02:41.710$ Any other comments?

NOTE Confidence: 0.634007122857143

 $01:02:43.180 \longrightarrow 01:02:45.098$ To ask questions, then the audience on

NOTE Confidence: 0.763244012

01:02:46.070 --> 01:02:47.980 there, there was, I thought,

NOTE Confidence: 0.763244012

01:02:47.980 --> 01:02:51.340 Q&A, but I there it is.

NOTE Confidence: 0.763244012

 $01:02:51.340 \longrightarrow 01:02:52.950$ We have time. Ohh. Yeah.

NOTE Confidence: 0.763244012

01:02:52.950 --> 01:02:53.940 We've got some questions here,

NOTE Confidence: 0.763244012

 $01:02:53.940 \longrightarrow 01:02:55.140$ but maybe one more for you and then

NOTE Confidence: 0.763244012

 $01:02:55.140 \longrightarrow 01:02:56.320$ I'll go to the online questions.

NOTE Confidence: 0.763244012

01:02:56.320 --> 01:02:57.840 Yes, OK. Thank you.

NOTE Confidence: 0.763244012

01:02:57.840 --> 01:02:59.999 Thanks, Jeff. Fantastic work.

NOTE Confidence: 0.77099422

 $01:03:02.760 \longrightarrow 01:03:05.818$ I think your methodology is on the right

NOTE Confidence: 0.77099422

01:03:05.818 --> 01:03:09.482 track and nothing to worry about at all.

 $01:03:09.482 \longrightarrow 01:03:11.926$ The opposite is true.

NOTE Confidence: 0.77099422

01:03:11.930 --> 01:03:14.895 My only concern is availability

NOTE Confidence: 0.77099422

 $01:03:14.895 \longrightarrow 01:03:17.860$ of data in the future,

NOTE Confidence: 0.77099422

 $01:03:17.860 \longrightarrow 01:03:21.400$ especially for new types of cancers.

NOTE Confidence: 0.77099422

 $01:03:21.400 \longrightarrow 01:03:23.716$ Are we asking the right questions?

NOTE Confidence: 0.77099422

 $01:03:23.720 \longrightarrow 01:03:27.176$ Are we collecting the right data?

NOTE Confidence: 0.77099422

01:03:27.180 --> 01:03:34.140 Be meaning human as humans. And.

NOTE Confidence: 0.77099422

 $01:03:34.140 \longrightarrow 01:03:36.546$ I'd like us humans to ensure

NOTE Confidence: 0.77099422

01:03:36.546 --> 01:03:39.120 that this data is available,

NOTE Confidence: 0.77099422

01:03:39.120 --> 01:03:44.419 it's it's open source and it's reliable

NOTE Confidence: 0.77099422

 $01:03:44.420 \longrightarrow 01:03:47.318$ and what are your thoughts on that?

NOTE Confidence: 0.77099422

 $01:03:47.320 \longrightarrow 01:03:48.880$ Yeah, so that's a great question.

NOTE Confidence: 0.77099422

 $01{:}03{:}48.880 \dashrightarrow 01{:}03{:}50.941$ I mean I think that the volume of data

NOTE Confidence: 0.77099422

 $01:03:50.941 \longrightarrow 01:03:52.793$ sets on like tumor Genesis for section

NOTE Confidence: 0.77099422

01:03:52.793 --> 01:03:55.083 kind of data is going to increase very

NOTE Confidence: 0.77099422

 $01:03:55.083 \longrightarrow 01:03:57.347$ well on its own like we don't need

 $01:03:57.347 \longrightarrow 01:03:59.800$ to pay attention to that question.

NOTE Confidence: 0.77099422

 $01:03:59.800 \longrightarrow 01:04:01.834$ The the datasets that I think I would like

NOTE Confidence: 0.77099422

 $01:04:01.834 \longrightarrow 01:04:04.119$ to see more of are these multi sample data.

NOTE Confidence: 0.77099422

 $01:04:04.120 \longrightarrow 01:04:05.748$ That's from individual patients.

NOTE Confidence: 0.77099422

01:04:05.748 --> 01:04:06.969 Back in 2016,

NOTE Confidence: 0.77099422

 $01:04:06.970 \longrightarrow 01:04:08.906$ I was lucky to be funded by Gilead

NOTE Confidence: 0.77099422

 $01:04:08.906 \longrightarrow 01:04:10.470$ to actually sequence these large

NOTE Confidence: 0.77099422

 $01:04:10.470 \longrightarrow 01:04:12.180$ numbers of metastatic and primary

NOTE Confidence: 0.77099422

 $01:04:12.180 \longrightarrow 01:04:14.127$ tumors and they were really there.

NOTE Confidence: 0.77099422

 $01:04:14.130 \longrightarrow 01:04:15.815$ The potential of those data

NOTE Confidence: 0.77099422

01:04:15.815 --> 01:04:17.163 sets is really high,

NOTE Confidence: 0.77099422

 $01:04:17.170 \longrightarrow 01:04:18.595$ especially if they have a

NOTE Confidence: 0.77099422

 $01{:}04{:}18.595 \dashrightarrow 01{:}04{:}19.450$ clinical annotations alongside.

NOTE Confidence: 0.77099422

 $01:04:19.450 \longrightarrow 01:04:21.304$ So you can map it to to understand what

NOTE Confidence: 0.77099422

 $01:04:21.304 \longrightarrow 01:04:23.006$ was happening for the patient at the

 $01:04:23.006 \longrightarrow 01:04:25.270$ same time as what was happening genetically.

NOTE Confidence: 0.77099422

 $01:04:25.270 \longrightarrow 01:04:27.100$ That data set though was

NOTE Confidence: 0.77099422

01:04:27.100 --> 01:04:28.907 heterogeneous by cancer type, right?

NOTE Confidence: 0.77099422

 $01:04:28.907 \longrightarrow 01:04:31.266$ And I haven't seen similar sized data

NOTE Confidence: 0.77099422

 $01:04:31.266 \longrightarrow 01:04:34.149$ sets on individual cancer types gathered.

NOTE Confidence: 0.77099422

01:04:34.150 --> 01:04:35.640 And it's not, you know,

NOTE Confidence: 0.77099422

 $01:04:35.640 \longrightarrow 01:04:37.656$ it's a lot of money like it's a couple

NOTE Confidence: 0.77099422

01:04:37.656 --> 01:04:38.940 \$1,000,000 to do that sequencing,

NOTE Confidence: 0.77099422

 $01:04:38.940 \longrightarrow 01:04:41.268$ but you could do that for

NOTE Confidence: 0.77099422

 $01:04:41.268 \longrightarrow 01:04:42.820$ every cancer type for.

NOTE Confidence: 0.77099422

01:04:42.820 --> 01:04:43.380 You know,

NOTE Confidence: 0.77099422

 $01:04:43.380 \longrightarrow 01:04:45.060$ \$30 million or something like that.

NOTE Confidence: 0.77099422

 $01{:}04{:}45.060 \dashrightarrow 01{:}04{:}46.740$ And I think that would be so worth

NOTE Confidence: 0.77099422

 $01:04:46.740 \longrightarrow 01:04:48.592$ it because we would learn so much

NOTE Confidence: 0.77099422

01:04:48.592 --> 01:04:49.972 about the evolutionary trajectory of

NOTE Confidence: 0.77099422

 $01:04:50.020 \longrightarrow 01:04:51.756$ each of these cancer types by looking

 $01{:}04{:}51.756 \dashrightarrow 01{:}04{:}53.340$ at multi sample data like that.

NOTE Confidence: 0.77099422

01:04:53.340 --> 01:04:55.020 But I haven't managed to sort

NOTE Confidence: 0.77099422

 $01:04:55.020 \longrightarrow 01:04:56.877$ of put together the argument to

NOTE Confidence: 0.77099422

 $01:04:56.877 \longrightarrow 01:04:58.392$ get funding to do that.

NOTE Confidence: 0.77099422

 $01:04:58.400 \longrightarrow 01:05:02.930$ I encourage you to elevate that, you know.

NOTE Confidence: 0.77099422

 $01:05:02.930 \longrightarrow 01:05:07.790$ Definitely. Yeah. Thanks. Like.

NOTE Confidence: 0.77099422

 $01:05:07.790 \longrightarrow 01:05:11.956$ Just. Comments. I'm sorry.

NOTE Confidence: 0.77099422

01:05:11.956 --> 01:05:13.644 OK. First, I enjoy your talk.

NOTE Confidence: 0.77099422

01:05:13.644 --> 01:05:14.178 Thank you.

NOTE Confidence: 0.868388082

 $01:05:14.220 \longrightarrow 01:05:17.110$ But I'm not so sure.

NOTE Confidence: 0.868388082

 $01:05:17.110 \longrightarrow 01:05:19.590$ Given the tumor heterogeneity.

NOTE Confidence: 0.868388082

 $01:05:19.590 \longrightarrow 01:05:22.074$ Your math, just the tumor cell.

NOTE Confidence: 0.868388082

 $01{:}05{:}22.074 --> 01{:}05{:}23.629$ We don't even talk about

NOTE Confidence: 0.868388082

 $01:05:23.629 \longrightarrow 01:05:25.090$ the microenvironment.

NOTE Confidence: 0.868388082

 $01:05:25.090 \longrightarrow 01:05:29.200$ Math sequence will really be useful.

 $01:05:29.200 \longrightarrow 01:05:32.090$ With all the other tools.

NOTE Confidence: 0.868388082

 $01{:}05{:}32.090 \dashrightarrow 01{:}05{:}34.010$ You know, otherwise you're going to.

NOTE Confidence: 0.868388082

01:05:34.010 --> 01:05:34.836 For instance,

NOTE Confidence: 0.868388082

 $01:05:34.836 \longrightarrow 01:05:37.314$ you just mentioned about the cluster.

NOTE Confidence: 0.868388082

 $01:05:37.320 \longrightarrow 01:05:38.580$ Approach.

NOTE Confidence: 0.868388082

 $01:05:38.580 \longrightarrow 01:05:41.380$ You can have a mutation in different

NOTE Confidence: 0.868388082

 $01:05:41.380 \longrightarrow 01:05:43.750$ tumor cells within the tumor mass.

NOTE Confidence: 0.87285068

 $01:05:45.800 \longrightarrow 01:05:47.450$ When you do the analysis,

NOTE Confidence: 0.87285068

 $01:05:47.450 \longrightarrow 01:05:48.630$ you put them all together.

NOTE Confidence: 0.8229486875

01:05:50.740 --> 01:05:51.748 Does that make sense?

NOTE Confidence: 0.839879968947368

01:05:53.490 --> 01:05:54.633 I think I might need to talk to you

NOTE Confidence: 0.839879968947368

 $01:05:54.633 \longrightarrow 01:05:56.004$ at more length to sort of fully

NOTE Confidence: 0.839879968947368

 $01:05:56.004 \longrightarrow 01:05:57.624$ understand your question, but but I

NOTE Confidence: 0.839879968947368

 $01:05:57.624 \longrightarrow 01:06:00.460$ guess what I would comment is just that.

NOTE Confidence: 0.839879968947368

 $01:06:00.460 \longrightarrow 01:06:02.370$ And I say this is the kind of data we need.

NOTE Confidence: 0.839879968947368

01:06:02.370 --> 01:06:04.186 I'm mostly talking about for the kind of

01:06:04.186 --> 01:06:05.984 work that I'm talking about rather than

NOTE Confidence: 0.839879968947368

 $01:06:05.984 \longrightarrow 01:06:07.662$ for everything to solve cancer, of course.

NOTE Confidence: 0.839879968947368

 $01{:}06{:}07.662 \dashrightarrow 01{:}06{:}09.230$ So, but but in order to understand the

NOTE Confidence: 0.839879968947368

 $01:06:09.278 \longrightarrow 01:06:10.762$ underlying selective coefficients and

NOTE Confidence: 0.839879968947368

01:06:10.762 --> 01:06:12.246 understand the mutational processes,

NOTE Confidence: 0.839879968947368

 $01:06:12.250 \longrightarrow 01:06:14.596$ I do think large amounts of.

NOTE Confidence: 0.839879968947368

01:06:14.600 --> 01:06:16.450 Tumor resection data which will

NOTE Confidence: 0.839879968947368

 $01:06:16.450 \longrightarrow 01:06:17.560$ be gathered anyway,

NOTE Confidence: 0.839879968947368

 $01:06:17.560 \longrightarrow 01:06:19.528$ but also more of this multi sample data

NOTE Confidence: 0.839879968947368

 $01:06:19.528 \longrightarrow 01:06:21.432$ so that we can understand dynamically

NOTE Confidence: 0.839879968947368

01:06:21.432 --> 01:06:23.840 over time what's happening which we can't.

NOTE Confidence: 0.839879968947368

 $01:06:23.840 \longrightarrow 01:06:25.973$ We can do, I said in a probabilistic way,

NOTE Confidence: 0.839879968947368

 $01{:}06{:}25.980 \to 01{:}06{:}27.948$ but never in a very satisfying way with

NOTE Confidence: 0.839879968947368

 $01:06:27.948 \longrightarrow 01:06:29.987$ just the tumor genesis resection data.

NOTE Confidence: 0.782779761851852

 $01:06:31.650 \longrightarrow 01:06:34.471$ It makes the noise that the tumor

 $01:06:34.471 \longrightarrow 01:06:36.635$ cellularity differences we bring in and

NOTE Confidence: 0.782779761851852

01:06:36.635 --> 01:06:39.234 I think it also remains you are gorgeous

NOTE Confidence: 0.782779761851852

 $01:06:39.234 \longrightarrow 01:06:41.994$ question about the copy number changes.

NOTE Confidence: 0.782779761851852

01:06:42.000 --> 01:06:42.870 So how do you adjust,

NOTE Confidence: 0.782779761851852

 $01:06:42.870 \longrightarrow 01:06:45.174$ what is that you know if it has

NOTE Confidence: 0.782779761851852

01:06:45.174 --> 01:06:47.867 17 copies of imitation it has that

NOTE Confidence: 0.782779761851852

 $01:06:47.867 \longrightarrow 01:06:49.907$ signature that will be amplified.

NOTE Confidence: 0.782779761851852

01:06:49.910 --> 01:06:51.595 And it's not necessarily black

NOTE Confidence: 0.782779761851852

 $01:06:51.595 \longrightarrow 01:06:53.827$ would be the actual sometimes

NOTE Confidence: 0.782779761851852

 $01:06:53.827 \longrightarrow 01:06:55.335$ higher prevalence of contribution

NOTE Confidence: 0.782779761851852

 $01{:}06{:}55{.}335 \dashrightarrow 01{:}06{:}57{.}770$ of the particular audition process,

NOTE Confidence: 0.782779761851852

 $01:06:57.770 \longrightarrow 01:07:00.506$ but it's just that the gene.

NOTE Confidence: 0.782779761851852

 $01:07:00.510 \dashrightarrow 01:07:04.290$ I see these questions about the the.

NOTE Confidence: 0.782779761851852

 $01:07:04.290 \longrightarrow 01:07:06.775$ So the adjacent normal tissues

NOTE Confidence: 0.782779761851852

01:07:06.775 --> 01:07:08.763 requires mutations and they

NOTE Confidence: 0.782779761851852

01:07:08.763 --> 01:07:10.820 actually introduce noise, right?

 $01:07:12.750 \longrightarrow 01:07:16.692$ Yes. So both of those are sources of noise

NOTE Confidence: 0.916899381111111

 $01:07:16.700 \longrightarrow 01:07:20.580$ in the sense that on average as we look at,

NOTE Confidence: 0.916899381111111

 $01:07:20.580 \longrightarrow 01:07:22.748$ so the say talk about a gene amplification

NOTE Confidence: 0.916899381111111

 $01:07:22.748 \longrightarrow 01:07:24.279$ for instance is a great example.

NOTE Confidence: 0.916899381111111

 $01:07:24.280 \longrightarrow 01:07:25.840$ When you get a gene amplification,

NOTE Confidence: 0.916899381111111

 $01:07:25.840 \longrightarrow 01:07:28.192$ you know the the mutation itself may not

NOTE Confidence: 0.916899381111111

 $01:07:28.192 \longrightarrow 01:07:30.145$ be contributing the cancer effect size that

NOTE Confidence: 0.916899381111111

 $01:07:30.145 \longrightarrow 01:07:32.458$ we analyze when we get this kind of data.

NOTE Confidence: 0.916899381111111

 $01:07:32.460 \longrightarrow 01:07:34.420$ But what is true is that those

NOTE Confidence: 0.916899381111111

 $01:07:34.420 \longrightarrow 01:07:37.003$ mutations and the amount of copy number

NOTE Confidence: 0.9168993811111111

 $01:07:37.003 \longrightarrow 01:07:39.103$ amplification that they typically have

NOTE Confidence: 0.916899381111111

 $01:07:39.103 \longrightarrow 01:07:41.223$ contributes this amount because we're just

NOTE Confidence: 0.916899381111111

 $01{:}07{:}41.223 \dashrightarrow 01{:}07{:}43.706$ looking at whether or not we see these.

NOTE Confidence: 0.916899381111111

 $01{:}07{:}43.706 \dashrightarrow 01{:}07{:}45.398$ The patients and whatever other processes

NOTE Confidence: 0.916899381111111

01:07:45.398 --> 01:07:47.264 are going on, we're averaging over. So.

 $01:07:47.264 \longrightarrow 01:07:49.459$ So the cancer effect size is still I

NOTE Confidence: 0.916899381111111

 $01:07:49.459 \longrightarrow 01:07:51.379$ would say it's still the measure of how

NOTE Confidence: 0.916899381111111

01:07:51.439 --> 01:07:53.539 much that mutation is contributing to it.

NOTE Confidence: 0.916899381111111

 $01:07:53.540 \longrightarrow 01:07:55.304$ But the means by which it contributes

NOTE Confidence: 0.916899381111111

 $01:07:55.304 \longrightarrow 01:07:57.248$ we don't really know from this analysis.

NOTE Confidence: 0.916899381111111

01:07:57.250 --> 01:07:59.322 It's a it's just that wider question of

NOTE Confidence: 0.916899381111111

 $01:07:59.322 \longrightarrow 01:08:01.238$ how much is this variant contributing

NOTE Confidence: 0.916899381111111

 $01{:}08{:}01.238 \dashrightarrow 01{:}08{:}03.248$ and and if it needs amplification

NOTE Confidence: 0.9168993811111111

 $01:08:03.303 \longrightarrow 01:08:04.598$ as part of that process,

NOTE Confidence: 0.916899381111111

 $01:08:04.600 \longrightarrow 01:08:06.544$ well then we need to do a more

NOTE Confidence: 0.916899381111111

 $01{:}08{:}06.544 \dashrightarrow 01{:}08{:}08.234$ detailed analysis that looks both at

NOTE Confidence: 0.916899381111111

 $01:08:08.234 \longrightarrow 01:08:09.962$ amplification and the and the mutation

NOTE Confidence: 0.916899381111111

 $01:08:10.019 \longrightarrow 01:08:12.206$ and then we'll be able to say like how

NOTE Confidence: 0.916899381111111

 $01:08:12.206 \longrightarrow 01:08:13.596$ important that mutation is in terms of.

NOTE Confidence: 0.916899381111111

 $01:08:13.600 \longrightarrow 01:08:15.424$ Cancer affect how important the amplification

NOTE Confidence: 0.916899381111111

 $01:08:15.424 \longrightarrow 01:08:17.536$ vacation is in terms of cancer effect

 $01:08:17.536 \longrightarrow 01:08:18.946$ compared to the mutation itself.

NOTE Confidence: 0.916899381111111

01:08:18.950 --> 01:08:19.766 That's not something we've

NOTE Confidence: 0.916899381111111

 $01:08:19.766 \longrightarrow 01:08:20.786$ been able to do yet,

NOTE Confidence: 0.916899381111111

 $01:08:20.790 \longrightarrow 01:08:23.136$ but it's something on our agenda.

NOTE Confidence: 0.916899381111111

 $01:08:23.140 \longrightarrow 01:08:24.616$ It's very difficult but I think

NOTE Confidence: 0.916899381111111

 $01:08:24.616 \longrightarrow 01:08:26.090$ it's achievable but very difficult.

NOTE Confidence: 0.73867273

01:08:28.550 --> 01:08:30.188 I think I better quickly ask,

NOTE Confidence: 0.73867273

01:08:30.190 --> 01:08:32.422 I feel sorry for the people

NOTE Confidence: 0.73867273

 $01:08:32.422 \longrightarrow 01:08:33.910$ who ask questions online.

NOTE Confidence: 0.73867273

 $01:08:33.910 \longrightarrow 01:08:35.926$ The one question is,

NOTE Confidence: 0.73867273

01:08:35.926 --> 01:08:38.950 is mutation a biochemical reaction to

NOTE Confidence: 0.73867273

 $01:08:39.044 \longrightarrow 01:08:42.084$ TR GRC a substitute of T or G or C?

NOTE Confidence: 0.73867273

 $01{:}08{:}42.090 \dashrightarrow 01{:}08{:}43.450$ The mutations I'm talking about

NOTE Confidence: 0.73867273

 $01:08:43.450 \longrightarrow 01:08:45.144$ in this entire study were all

NOTE Confidence: 0.73867273

 $01:08:45.144 \longrightarrow 01:08:46.288$ single new type mutations.

01:08:46.290 --> 01:08:48.530 In the context of A3,

NOTE Confidence: 0.73867273

 $01:08:48.530 \longrightarrow 01:08:50.288$ what I meant by trinucleotide context

NOTE Confidence: 0.73867273

 $01:08:50.288 \longrightarrow 01:08:52.507$ is the 3 mutations in the central one.

NOTE Confidence: 0.73867273

 $01:08:52.510 \longrightarrow 01:08:54.385$ How was that mutated to

NOTE Confidence: 0.73867273

 $01:08:54.385 \longrightarrow 01:08:55.510$ another single nucleotide?

NOTE Confidence: 0.73867273

 $01:08:55.510 \longrightarrow 01:08:57.050$ There are ways to look at doublets

NOTE Confidence: 0.73867273

 $01:08:57.050 \longrightarrow 01:08:58.248$ there are ways to look at.

NOTE Confidence: 0.73867273

 $01:08:58.250 \longrightarrow 01:09:00.212$ Some other more complicated indels which

NOTE Confidence: 0.73867273

 $01{:}09{:}00.212 \to 01{:}09{:}02.960$ we have in the lab almost implemented,

NOTE Confidence: 0.73867273

 $01:09:02.960 \longrightarrow 01:09:06.032$ but other mutation types we don't

NOTE Confidence: 0.73867273

 $01{:}09{:}06.032 \dashrightarrow 01{:}09{:}08.394$ have actually looked at Yuval

NOTE Confidence: 0.73867273

01:09:08.394 --> 01:09:10.278 Kluger's question I think thank you.

NOTE Confidence: 0.73867273

 $01:09:10.280 \longrightarrow 01:09:13.312$ You have echoed that for for me on low.

NOTE Confidence: 0.73867273

 $01:09:13.312 \longrightarrow 01:09:15.064$ So I believe I answered that.

NOTE Confidence: 0.8935888325

 $01:09:17.920 \longrightarrow 01:09:20.482$ That you know basically it's true

NOTE Confidence: 0.8935888325

 $01:09:20.482 \longrightarrow 01:09:23.350$ that we don't know the specific,

 $01:09:23.350 \longrightarrow 01:09:25.022$ you know when we talk about this mutation

NOTE Confidence: 0.8935888325

01:09:25.022 --> 01:09:26.680 and how much is cancer effect sizes,

NOTE Confidence: 0.8935888325

01:09:26.680 --> 01:09:28.542 that's in the context of everything that

NOTE Confidence: 0.8935888325

 $01:09:28.542 \longrightarrow 01:09:30.235$ happens to that mutation in cancers

NOTE Confidence: 0.8935888325

 $01:09:30.235 \longrightarrow 01:09:31.915$ and it's the average across that.

NOTE Confidence: 0.811270495

01:09:33.970 --> 01:09:35.740 But Tim Robinson has a question,

NOTE Confidence: 0.811270495

 $01:09:35.740 \longrightarrow 01:09:37.987$ which is, can the spectrum of mutations

NOTE Confidence: 0.811270495

 $01:09:37.987 \longrightarrow 01:09:40.416$ tell us about the chance that the

NOTE Confidence: 0.811270495

 $01:09:40.416 \longrightarrow 01:09:42.166$ tumor will respond to treatment?

NOTE Confidence: 0.91101238

01:09:44.610 --> 01:09:47.170 It may well, so for instance you know this,

NOTE Confidence: 0.91101238

 $01{:}09{:}47.170 \dashrightarrow 01{:}09{:}49.126$ the fact that there were cisplatin

NOTE Confidence: 0.91101238

 $01:09:49.126 \longrightarrow 01:09:51.540$ mutations is going to tell you that it's

NOTE Confidence: 0.91101238

 $01{:}09{:}51.540 \dashrightarrow 01{:}09{:}53.505$ likely to have an EGFR T790M resistant

NOTE Confidence: 0.91101238

 $01:09:53.505 \longrightarrow 01:09:55.335$ mutation sort of sitting there waiting

NOTE Confidence: 0.91101238

 $01:09:55.335 \longrightarrow 01:09:57.270$ to come out when you give it a lot.

 $01:09:57.270 \longrightarrow 01:09:58.754$ So in a sense that spectrum could

NOTE Confidence: 0.91101238

 $01:09:58.754 \longrightarrow 01:10:00.387$ tell us about the chance that a

NOTE Confidence: 0.91101238

01:10:00.387 --> 01:10:01.567 tumor was bound to treatment.

NOTE Confidence: 0.91101238

01:10:01.570 --> 01:10:03.826 But in general if I could I would

NOTE Confidence: 0.91101238

 $01:10:03.826 \longrightarrow 01:10:05.753$ rather look at look for EGFR

NOTE Confidence: 0.91101238

01:10:05.753 --> 01:10:08.768 T790M itself directly for example,

NOTE Confidence: 0.91101238

 $01:10:08.770 \longrightarrow 01:10:11.034$ if the vast majority of mutations are in

NOTE Confidence: 0.91101238

 $01:10:11.034 \longrightarrow 01:10:13.306$ Melanoma and Melanoma are B rap 600 and the.

NOTE Confidence: 0.91101238

 $01:10:13.310 \longrightarrow 01:10:15.045$ The vast memory of cancer

NOTE Confidence: 0.91101238

 $01:10:15.045 \longrightarrow 01:10:16.780$ causation by mutation is there.

NOTE Confidence: 0.91101238

 $01{:}10{:}16.780 \dashrightarrow 01{:}10{:}19.044$ Does that inform the chance that the tumor

NOTE Confidence: 0.91101238

01:10:19.044 --> 01:10:21.266 will respond to directed therapy to be wrap?

NOTE Confidence: 0.47006366

01:10:23.510 --> 01:10:26.538 Umm, I think the, you know, the number

NOTE Confidence: 0.47006366

 $01:10:26.538 \longrightarrow 01:10:28.369$ of mutations I don't think does at all.

NOTE Confidence: 0.47006366

01:10:28.370 --> 01:10:30.104 I think that what's important to

NOTE Confidence: 0.47006366

 $01{:}10{:}30.104 \dashrightarrow 01{:}10{:}32.040$ understand about Viraf E7 and E and

01:10:32.040 --> 01:10:33.691 it's cancer effect size, which by the

NOTE Confidence: 0.47006366

01:10:33.691 --> 01:10:35.590 way is a very high cancer effect size,

NOTE Confidence: 0.47006366

01:10:35.590 --> 01:10:38.182 is that if you can get a therapy that

NOTE Confidence: 0.47006366

01:10:38.182 --> 01:10:40.367 treats the rap fee 600 effectively,

NOTE Confidence: 0.47006366

 $01:10:40.370 \longrightarrow 01:10:42.449$ it will be a very effective therapy.

NOTE Confidence: 0.47006366

 $01:10:42.450 \longrightarrow 01:10:44.025$ And there's a good example of that.

NOTE Confidence: 0.47006366

01:10:44.030 --> 01:10:45.958 And there's a caveat to that example also,

NOTE Confidence: 0.47006366

 $01:10:45.960 \longrightarrow 01:10:48.216$ which is that the raffish under 600 E,

NOTE Confidence: 0.47006366

01:10:48.220 --> 01:10:49.828 as many people know, there's vemurafenib,

NOTE Confidence: 0.47006366

 $01:10:49.830 \longrightarrow 01:10:51.522$ which is a very effective therapy

NOTE Confidence: 0.47006366

 $01:10:51.522 \longrightarrow 01:10:52.368$ for skin cancer.

NOTE Confidence: 0.47006366

 $01:10:52.370 \longrightarrow 01:10:53.640$ The only problem is there's.

NOTE Confidence: 0.47006366

 $01{:}10{:}53.640 \dashrightarrow 01{:}10{:}55.750$ Very rapid evolution of resistance.

NOTE Confidence: 0.47006366

 $01{:}10{:}55.750 \dashrightarrow 01{:}10{:}57.892$ Nothing about cancer effect tells you

NOTE Confidence: 0.47006366

01:10:57.892 --> 01:10:59.990 how quickly resistance will be evolved,

 $01:10:59.990 \longrightarrow 01:11:02.475$ and in that case this also interplays

NOTE Confidence: 0.47006366

 $01:11:02.475 \longrightarrow 01:11:04.200$ with CNV's because at least one

NOTE Confidence: 0.47006366

 $01:11:04.200 \longrightarrow 01:11:05.907$ of the explanations for why that

NOTE Confidence: 0.47006366

01:11:05.907 --> 01:11:07.895 rapid rises occurs is that you get

NOTE Confidence: 0.47006366

 $01:11:07.895 \longrightarrow 01:11:09.624$ amplification of the variant BRAF

NOTE Confidence: 0.47006366

 $01:11:09.624 \longrightarrow 01:11:12.009 \text{ V}600E$ that basically overwhelms the

NOTE Confidence: 0.47006366

 $01:11:12.009 \longrightarrow 01:11:14.491$ treatment of vemurafenib and means that

NOTE Confidence: 0.47006366

01:11:14.491 --> 01:11:16.780 you and that's a very fast process.

NOTE Confidence: 0.47006366

01:11:16.780 --> 01:11:18.831 Amplification of a gene in a genome

NOTE Confidence: 0.47006366

01:11:18.831 --> 01:11:21.689 is not hard to do as a high mutation

NOTE Confidence: 0.47006366

01:11:21.689 --> 01:11:22.961 rate happens very quickly.

NOTE Confidence: 0.47006366

 $01:11:22.970 \longrightarrow 01:11:23.564$ Some cells have.

NOTE Confidence: 0.47006366

 $01:11:23.564 \longrightarrow 01:11:24.950$ More of it somehow is less than

NOTE Confidence: 0.47006366

 $01:11:24.992 \longrightarrow 01:11:26.227$ those ones with more selected.

NOTE Confidence: 0.47006366

 $01:11:26.230 \longrightarrow 01:11:27.958$ It's very easy to select on that basis.

NOTE Confidence: 0.47006366

 $01{:}11{:}27.960 \dashrightarrow 01{:}11{:}30.232$ So so it I think it informs you

 $01:11:30.232 \longrightarrow 01:11:32.121$ about how likely a treatment is

NOTE Confidence: 0.47006366

 $01{:}11{:}32.121 \dashrightarrow 01{:}11{:}34.871$ to have a big effect at the moment

NOTE Confidence: 0.47006366

01:11:34.871 --> 01:11:36.487 you apply the treatment.

NOTE Confidence: 0.47006366

01:11:36.490 --> 01:11:37.795 How quickly you evolve resistance

NOTE Confidence: 0.47006366

 $01:11:37.795 \longrightarrow 01:11:38.578$ is another question.

NOTE Confidence: 0.5114488

01:11:40.830 --> 01:11:44.804 Umm. And already moustaki the

NOTE Confidence: 0.5114488

01:11:44.804 --> 01:11:47.068 sources of mutations smoking,

NOTE Confidence: 0.5114488

 $01:11:47.070 \longrightarrow 01:11:50.208$ UV infection affect the normal non

NOTE Confidence: 0.5114488

 $01{:}11{:}50.208 \dashrightarrow 01{:}11{:}51.917$ transform tissues. Yes they do.

NOTE Confidence: 0.5114488

01:11:51.917 --> 01:11:53.450 Can you use your approach to calculate

NOTE Confidence: 0.5114488

 $01:11:53.496 \longrightarrow 01:11:55.302$ the cancer effect mutations on the tumor

NOTE Confidence: 0.5114488

 $01:11:55.302 \longrightarrow 01:11:56.849$ micro movement have on tumorigenesis.

NOTE Confidence: 0.5114488

 $01{:}11{:}56.850 \dashrightarrow 01{:}11{:}58.626$ One might argue a lot of these mutation

NOTE Confidence: 0.5114488

01:11:58.626 --> 01:12:00.094 sources act on the environment reducing

NOTE Confidence: 0.5114488

 $01:12:00.094 \longrightarrow 01:12:02.169$ the fitness of a normal cell allowing the.

 $01:12:02.170 \longrightarrow 01:12:03.328$ This is a really interesting question.

NOTE Confidence: 0.5114488

 $01:12:03.330 \longrightarrow 01:12:04.590$ We are working on this.

NOTE Confidence: 0.5114488

 $01:12:04.590 \longrightarrow 01:12:06.529$ So the the bottom line is that

NOTE Confidence: 0.5114488

 $01{:}12{:}06.529 \dashrightarrow 01{:}12{:}08.721$ and I'll be very quick with this

NOTE Confidence: 0.5114488

 $01:12:08.721 \longrightarrow 01:12:11.114$ answer that once we are able to

NOTE Confidence: 0.5114488

 $01{:}12{:}11.114 \dashrightarrow 01{:}12{:}13.039$ figure out these cancer effects.

NOTE Confidence: 0.5114488

 $01:12:13.040 \longrightarrow 01:12:15.088$ Then we can ask it to the extent

NOTE Confidence: 0.5114488

 $01:12:15.088 \longrightarrow 01:12:17.020$ that we have annotated data on

NOTE Confidence: 0.5114488

 $01{:}12{:}17.020 \longrightarrow 01{:}12{:}19.054$ this tumor was exposed to this

NOTE Confidence: 0.5114488

01:12:19.120 --> 01:12:21.360 given treat this given environment,

NOTE Confidence: 0.5114488

 $01:12:21.360 \longrightarrow 01:12:23.810$ we can ask how does that environment

NOTE Confidence: 0.5114488

 $01:12:23.810 \longrightarrow 01:12:25.380$ affect the cancer effect.

NOTE Confidence: 0.5114488

01:12:25.380 --> 01:12:26.796 So we can ask if you're,

NOTE Confidence: 0.5114488

01:12:26.800 --> 01:12:27.900 if you have different ages,

NOTE Confidence: 0.5114488

01:12:27.900 --> 01:12:29.756 not just what mutations are caused by aging,

NOTE Confidence: 0.5114488

 $01:12:29.760 \longrightarrow 01:12:31.902$ but how much does the cancer effect of a

 $01{:}12{:}31.902 \longrightarrow 01{:}12{:}33.859$ given mutation change as someone ages.

NOTE Confidence: 0.5114488

 $01:12:33.860 \longrightarrow 01:12:35.484$ So there's ways to do that with

NOTE Confidence: 0.5114488

 $01:12:35.484 \longrightarrow 01:12:36.940$ the kind of data we have.

NOTE Confidence: 0.5114488

 $01{:}12{:}36.940 \dashrightarrow 01{:}12{:}39.590$ Again it requires bigger sample

NOTE Confidence: 0.5114488

01:12:39.590 --> 01:12:40.704 sizes in general,

NOTE Confidence: 0.5114488

01:12:40.704 --> 01:12:43.040 but we're looking at that right now with.

NOTE Confidence: 0.5114488

01:12:43.040 --> 01:12:43.916 Regard to smoking,

NOTE Confidence: 0.5114488

 $01{:}12{:}43.916 \dashrightarrow 01{:}12{:}45.960$ because smoking of course can have a

NOTE Confidence: 0.5114488

01:12:46.021 --> 01:12:48.307 direct effect of mutating individual genes,

NOTE Confidence: 0.5114488

 $01:12:48.310 \longrightarrow 01:12:50.732$ but it can also have a physiological

NOTE Confidence: 0.5114488

 $01{:}12{:}50.732 \dashrightarrow 01{:}12{:}52.866$ effect of degrading the normal cells

NOTE Confidence: 0.5114488

 $01:12:52.866 \longrightarrow 01:12:54.924$ in general in the lung ecosystem.

NOTE Confidence: 0.5114488

 $01{:}12{:}54.930 \dashrightarrow 01{:}12{:}56.729$ And because you have degraded normal cells,

NOTE Confidence: 0.5114488

 $01:12:56.730 \longrightarrow 01:12:57.955$ that could increase your chance

NOTE Confidence: 0.5114488

 $01:12:57.955 \longrightarrow 01:12:58.690$ of getting cancer.

 $01:12:58.690 \longrightarrow 01:13:00.196$ Or it could mean that certain

NOTE Confidence: 0.5114488

 $01:13:00.196 \longrightarrow 01:13:01.764$ mutations are more likely to be

NOTE Confidence: 0.5114488

 $01{:}13{:}01.764 \dashrightarrow 01{:}13{:}03.300$ able to make cancer proliferate and

NOTE Confidence: 0.5114488

 $01:13:03.300 \longrightarrow 01:13:04.819$ survive better than other mutations.

NOTE Confidence: 0.5114488 01:13:04.820 --> 01:13:05.132 So.

NOTE Confidence: 0.5114488

 $01:13:05.132 \longrightarrow 01:13:07.316$ So the Physiology could be very important,

NOTE Confidence: 0.5114488

 $01:13:07.320 \longrightarrow 01:13:09.008$ and there are ways to get at that.

NOTE Confidence: 0.5114488

01:13:09.010 --> 01:13:10.410 But you need to know this first,

NOTE Confidence: 0.5114488

 $01:13:10.410 \longrightarrow 01:13:12.419$ and then you can ask the question

NOTE Confidence: 0.5114488

01:13:12.419 --> 01:13:13.670 about Physiology affecting things.

NOTE Confidence: 0.5114488

 $01{:}13{:}13.670 \dashrightarrow 01{:}13{:}15.994$ And I think I'm out of time.