In a new study, Yale researchers identified a molecule that binds to a disease-associated macrophage migration inhibitory factor (MIF) gene variant. The discovery, they say, could lead to the development of a new generation of precision medicine-based therapies that address diverse autoimmune and inflammatory conditions.
The findings were published in the Journal of Biological Chemistry.
Many autoimmune and inflammatory diseases develop because of susceptibilities encoded by genetic variants in our DNA. MIF gene variants are common in people and confer risk for multiple autoimmune, infectious, and oncologic diseases, explains corresponding author Richard Bucala, MD, PhD, Waldemar Von Zedtwitz Professor of Medicine (Rheumatology) and professor of pathology and of epidemiology at Yale School of Medicine (YSM). MIF, an inflammatory mediator, plays a significant role in the body’s immune response.
“These natural gene variants produce different levels of the MIF protein that influence the risk of developing a particular disease or of having an especially severe form of it,” Bucala said.
Researchers in the Bucala lab developed a highly sensitive, high-throughput assay to identify molecules that could bind to the variant DNA sequence in the MIF gene and prevent its interaction with the transcription factor, or protein that controls the transcription of genetic information. The assay was used to screen tens of thousands of molecules to identify ones that might reduce MIF production in the high MIF gene-variant cells.