IMAGE-GUIDED ABLATION (PERCUTANEOUS)

Session 2: The patient with early stage disease: what is the first line therapy?

Jeffrey S. Pollak, M.D.
Robert I. White, Jr., M.D. Professor of Interventional Radiology
Yale University School of Medicine
Department of Radiology and Biomedical Imaging
Goals

• Define percutaneous image-guided local ablation
• Review methods of image-guided ablation
• Review results of image-guided ablation
• Identify the role of image-guided ablation in early stage hepatocellular carcinoma
Early and Very Early Stage Hepatocellular Carcinoma

- Limited size and number of tumor(s)
 - ≤3 localized tumors
 - one 2-5 cm, two or three 2-3 cm
 - Very early stage: one ≤2 cm

- Preserved liver function

- Preserved overall function
Therapies for Hepatocellular Carcinoma

- Liver transplantation
- Surgical resection – typically ≤10-20% eligible
- Ablation – percutaneous and operative
- Transarterial therapy
 - embolization
 - chemoembolization
 - radioembolization
- Systemic therapy
- Best supportive care
Therapies for Early Stage HCC
BCLC Staging & Treatment Algorithm

From Forner, Lancet 2018
Percutaneous Image-guided Local Ablation: *Concept*

- Introduction of drug, chemical, or energy directly into tumor under imaging guidance (US, CT, MRI) → destruction of visualized tumor plus a surrounding zone of liver
 - margin 5-10 mm (larger probably better)
- Considered a curative therapy
Percutaneous Image-guided Local Ablation: *Methods*

- Typically involves placing ≥1 needle(s) into tumor
- Avoid damage to biliary, vascular, or sensitive extrahepatic structures
Local Ablative Therapies: *Types*

- **Chemical injury**
 - ethanol
 - acetic acid

- **Thermal injury**
 - radiofrequency
 - microwave
 - cryotherapy
 - ↑ intensity focused US
 - hot saline
 - laser

- **Biological**
 - gene therapy

- **Bioelectrical**
 - irreversible electroporation
HCC Local Ablative Therapies: Types

- **Ethanol ablation**
 - early modality, surpassed by ↑ results w RFA

- **Radiofrequency ablation**
 - most extensively studied

- **Microwave ablation**
 - growing experience, favorable, replacing RFA

- **Cryoablation**
 - limited experience in HCC

- **Irreversible electroporation**
 - limited experience in HCC
Percutaneous Ethanol Ablation Therapy for HCC

• Mechanism
 – local cytotoxicity (cell dehydration, protein denaturation, tumor vessel occlusion)
 – EtOH diffuses into “soft” HCC but contained by surr firm, cirrhotic liver & any capsule, but also by intratumoral septa

• Technique
 – 20-22 G needle, may use mult needles/locations
 – volume calculated with extra 0.5-1 cm radius
 – usu limit to ~10 ml/Rx, so typically ≥ 2-4 Rx’s
 – guidance: US > CT
67 yo man w HCC, S/P R lobe chemoemb & resection & later wedge resect & RFA L lobe foci. New 1.6 cm caudate mass.
Ethanol Ablation: Complications

• Rates: major 0.28-7.4%
 death 0.14-1.3%

• Types
 – transient pain & fever ~50%
 – rarely (usually with larger EtOH volumes):
 - PV thrombosis
 - hemorrhage ~0.6%
 - cholangitis, bil obstr
 – tumor seeding of needle track ~0.1%
 – EtOH “intoxication” with larger volumes
 - pleural effusion
 - infect/lvr abscess
Hyperthermic Ablation (RFA & MWA): Goal

- Generate adequate elevation of temperature throughout target volume to produce nonviable tissue
 - $>60^\circ$ C \rightarrow immediate protein denaturation with irreversible cell damage, coagulative necrosis
 - lower temperatures \rightarrow longer time
Percutaneous Hyperthermic Ablation: Methods

• Perc 14-17 G needle access w US or CT guid

• Probe size/#: lesion size + 5-10 mm surr zone

• Traverse nl tissue, if poss, & coagulate track?
 – ↓ risks: blding & seeding

• Heavy moderate sedation
 – alternatively, GA

• Outpatient, occasionally require admission

• Treatment sessions: typically expect one
Hyperthermic Ablation (RFA & MWA): General Limitations

- **Size abl zone achievable about applicator**
 - typically ≤3+ cm

- **Avoid injury to adjacent vital structures**
 - GB, bowel, central bile duct, heart?
 - hydrodissect, artif ascites, surg abl, nontherm abl

- **Thermal sink from adjacent vessels, ≥3 mm**
 - MWA ↓ affected – nonthermal ablative options

- **Subcapsular lesions, direct puncture?**
 - perhaps greater risk of tumor seeding
 - risk of intraperitoneal hemorrhage?
HCC: subcapsular and colon anteriorly
Radiofrequency Ablation

• **Mechanism:** EM energy deposition
 – needle electrode in lesion + dispersive electrode (typically external grounding pads)
 – altern current → altern electric field in tissue → agitation ions surrounding electrode → heat

• **Avoid temperature >100° C**
 – tissue vaporizes & carbonizes → \uparrow impedance
 → limits dispersion of electrical field

• **Pacemaker:** possibly an issue if in the path of current between electrode and grounding pads
RFA: *Intrinsic Limitation*

- Limit tiss vol ablatable w 1 probe: typ ≤3 cm
- To increase volume
 - modified electrodes
 - *internal cool* (Cool-tip): ↓ overheat about electrode
 - *expandable electrode needles*: retractable tines
 - multiprobe arrays (e.g. Cluster Cool-tip)
 - saline injections to improve conduction
 - ↓ vasc-rel heat sink - emb HA/tumor feeding art
 - occl balloon in HA or HV
 - overlapping ablations – particularly for >3 cm
 - bipolar arrays
RFA: Devices

- **Radiotherapeutics (Boston Scientific)**
 - expandable LeVeen electrode with multiple tines in umbrella shape

- **RITA – Angiodynamics**
 - expandable electrode with multiple tines

- **Cool-tip (Covidien Valleylab)**
 - single or cluster (3) internal-cooled electrode(s)
76 yo man w CAD & HBV

Initial US 2.8 cm

Biopsy: Well diff HCC

Tines within lesion

S/P RFA
Microwave Ablation

• **Mechanism**: needle antenna → high frequency oscillating EM field → agitation polar molecules (water) → kinetic energy → friction → heat

• **Compared to RFA**
 – larger radius/ablation volumes (larger tumors)
 – faster
 – higher target lesion temperatures
 – more homogenous
 – less affected by rising tiss imped (e.g., charring)
 – less affected by adjacent vessels/heat sink
 – easier multiple simultaneous applications
Postablation Side Effects

• Early pain

• Postablation syndrome
 – common side effect, ~1/3 of patients
 – typically between days 3-10
 – symptoms
 ♦ pain
 ♦ nausea
 ♦ fever
 ♦ chills
 ♦ malaise and fatigue
 ♦ anorexia
Radiofrequency Ablation for Very Early & Early HCC: Results

- **Tumors ≤3 cm**
 - complete ablation on imaging >90%
 - if ≤2 cm, then >95%
 - 5 year survival 61-86%

- **Tumors >3 cm to ≤5 cm**
 - complete ablation on imaging ↓ to ~74%
RFA for Very Early & Early HCC: *Pathological Results*

- **Serra (2018)**
 - 78 patients undergoing transplantation after treatment of 125 HCCs
 - imaging response pre-transplant 78%
 - complete pathological response 62%
 - <2 cm: 77%, 2-3 cm: 55%, >3 cm: 31%
 - near vessel: 50%, distant 69% (p=0.039)
RFA & Ethanol Ablation: Meta-Analysis of Five Randomized Trials*

• RFA significantly better in all categories

<table>
<thead>
<tr>
<th></th>
<th>RFA</th>
<th>EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early complete abl</td>
<td>96%</td>
<td>88-92%</td>
</tr>
<tr>
<td>No. sessions</td>
<td>1.1-2.1</td>
<td>2.7-6.5</td>
</tr>
<tr>
<td>Local recurr at 3 y</td>
<td>14-18%</td>
<td>31-33%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surv (RFA/EtOH) %</th>
<th>2 y</th>
<th>3 y</th>
<th>4 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>- overall</td>
<td>81-98/63-88</td>
<td>74/51-55</td>
<td>74/57</td>
</tr>
<tr>
<td>- cancer-free</td>
<td>59-60/43-45</td>
<td>37-43/20-23</td>
<td></td>
</tr>
</tbody>
</table>

• NSD in adverse events in most studies

*Orlando, Am J GE, 2009
Microwave Ablation for Very Early & Early HCC: *Results*

- **Complete ablation >90%**
 - for tumors >3 cm to ≤5 cm, improved complete ablation rates of 90%
 - superior to RFA

- **Five year survival**
 - ~78%
MWA Compared to RFA for Early Stage HCC

- **Liu, 2018**: retrospective, MWA 126/RFA 436 pts
 - 5 year survival after propensity score matching
 - overall survival signif ↑ MWA 79.3% 68.4%
 - recur-free surv signif ↑ MWA 27.9% 6.4%

but for
- solitary HCC ≤3 cm
 - OS survival NSD 81.2% 66.3%
 - RFS survival NSD 37.7% 17.4%

→ Conclusion: RFA inferior to MWA for HCC within Milan criteria but comparable if ≤3 cm
Survival after HCC Thermal Ablation: Poor Prognostic Factors

- Poor liver function
- Poor performance
- Local tumor progression
- Aggressive tumor biology
 - microvascular invasion
 - high AFP
 - poorly differentiated
Percutaneous RFA and MWA: Complications

Rates

<table>
<thead>
<tr>
<th></th>
<th>RFA</th>
<th>MWA</th>
<th>(PEI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>major</td>
<td>4.1%</td>
<td>4.6%</td>
<td>(2.7%)</td>
</tr>
<tr>
<td>death</td>
<td>0.15%</td>
<td>0.23%</td>
<td>(0.59%)</td>
</tr>
</tbody>
</table>

More common types of major complications

- tumor seeding (0.5%)
- hemorrhage (intraperitoneal, hemothorax) (0.45%)
- liver abscess (0.32%)
- ascites (0.27%)
- pleural effusion (0.14%)
- hepatic infarction (0.13%)
- liver failure (0.11%)
- GI perforation (0.11%)
Cryoablation

• Mechanism
 – ≥ 1 needle(s) w compressed gas \rightarrow expands \rightarrow hypothermia \rightarrow cell destruction from ice crystals, dehydration, & protein denaturation
 – most reliable cell death w $T \leq 20^\circ C$

• Advantages-disadvantages
 – visible ice ball
 – likely less injurious to surrounding critical structures (e.g., bile ducts)
 – possible \uparrow risk hemorrhage
Small central segment 4a HCC
Near central structures, including major bile ducts

Cryoablation
MRI FU: nonviable and no injury.
Cryoablation for HCC

- Limited clinical data

- **Xu, 2018:** SEER database analysis
 - propensity-matched cohort of patients with localized HCC – stage I or II (can be >early stage) – treated with cryoablation or RFA
 - similar
 - overall survival
 - liver cancer specific survival
Irreversible Electroporation

• **Mechanism**
 - 2 or more needles \rightarrow high voltage applic \rightarrow irreversible \uparrow cell membr porosity \rightarrow cell death

• **Compared to thermal ablative methods**
 - more sharply marginated
 - not limited by flowing blood
 - can ablate up to margin of vessels
 - connective tissue unaffected
 - preservation of adjacent structures

• **Insufficient clinical data**
Ablation or Resection
RFA-Resection for Early Stage HCC: *Randomized Trials*

- Inconsistent results

- Comparable OS & recurrence free survival
 - Chen, 2006, solitary ≤ 5 cm HCC, 1-4 years
 - Feng, 2012, solitary HCC, 1-3 years
 - Fang, 2014, ≥ 1 tumor < 3 cm, 1-3 years
RFA-Resection for Early Stage HCC: Randomized Trials

• Comparable OS but reduced RFS
 – Ng, 2017, solitary tumor \(\leq 5 \) cm or \(\leq 3 \) tumors each \(\leq 3 \) cm
 ✷ NSD OS 1-10 y, trend towards poorer disease-free survival starting at 2 y
 ✷ but NSD for <2 cm and solitary tumors
 – Lee, 2018, solitary 2-4 cm HCC
 ✷ NSD OS 3 & 5 y dis-free survival but RFA had higher local recurrence
 ✷ similar distant intrahepatic and extrahepatic recurrence
RFA-Resection for Early Stage HCC: *Randomized Trials*

- Resection providing superior overall survival
 - Huang, 2010, HCC within Milan
 - OS & local recurrence worse with RFA
 - questions of adequate ablation technique
 - some patients had benign disease

- Post-operative complications and hospital stays typically significantly higher with resection in all studies
RFA-Resection: *Outcomes from US Nat’l Cancer Database (Uhlig, 2018)*

- **18,296 patients**: RFA 8211, resect 10,085
 - variable sizes & # – propensity score matched

- **RFA**: better post-treatment outcomes
 - hospital length of stay – 30 & 90 d mortality
 - unplanned readmissions

- **Full cohort OS better for resection**

- **Overall survival (5 y) comparable in those**
 - w severe liver fibrosis/cirrhosis (37.3%/39.4%)
 - >65 y.o.(21.9%/26.5%)
 - HCC <1.5 cm (49.7%/52.3%)
RFA-Resection for Very Early Stage HCC (≤ 2 cm): *Nonrandomized*

- **Huang, 2018**
 - 833 patients from US National Cancer Database
 - RFA 620, resection 213
 - NSD OS 1, 2, 3 years
 - RFA: 90%, 64%, and 47%
 - resection: 89%, 75%, and 62%

- **Yin, 2018**
 - meta-analysis, 5 studies
 - 729 patients
 - OS NSD at 1 y but resection better at 3 and 5 y
MWA-Resection for Early Stage HCC

- Zhang, 2017: meta-analysis
 - 9 studies, 1480 patients, fu 1-184 months
 - no signif difference between MWA & resection
 - overall survival
 - disease-free survival
 - tumor recurrence
 - including subgroup analysis HCC <3 cm
 - HCC >3 cm?
 - MWA significantly
 - shorter operative times
 - less blood loss
 - fewer complications
Ablation + Other Therapies
Combination Therapy for HCC

- Two image-guided Rx’s (ablation + HA Rx)
- Surgery + image guided therapy(ies)
- Above + systemic therapy
- LRT + liver transplantation

- As one planned treatment regimen
- At different times for evolving management of HCC
Chemoembolization + Local Ablation for HCC

- Chemoembolization before thermal ablation can ↑ necrosis volume
 - likely from ↓ heat sink
- No definite benefit for solitary tumors ≤3 cm
 - Shibata, 2009: randomized trial, RFA: NSD
- Beneficial for solitary tumors >3 to ≤5-7 cm
- Uncertain benefit for tumors >5-7 cm
- Possibly beneficial for 2-3 tumors ≤3 cm
Chemoembolization + Local Ablation for HCC Larger than 3 cm

• Peng, 2013
 – randomized trial TACE-RFA (94 pts)/RFA (95)
 ◇ solitary ≤7 cm or up to three ≤3 cm
 – significantly improved overall/recurrence-free survivals

<table>
<thead>
<tr>
<th></th>
<th>TACE-RFA</th>
<th>RFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 y</td>
<td>92.6/79.4</td>
<td>85.3/54.8</td>
</tr>
<tr>
<td>3 y</td>
<td>66.6/60.6</td>
<td>59.0/66.7</td>
</tr>
<tr>
<td>4 y</td>
<td>61.8/54.8</td>
<td>45.0/44.2</td>
</tr>
</tbody>
</table>
Chemoembolization + Local Ablation for HCC Larger than 3 cm

• Lu, 2013
 – meta-analysis randomized trials RFA+TACE or RFA alone: 7 trials
 – RFA+TACE significantly improved survival at 1 and 3 years only for HCC>3 cm

• Abdelaziz, 2017
 – TACE + either RFA (22 pts) or MWA (45 pts)
 – TACE-MWA → better response than TACE-RFA for tumors 3-5 cm
 – no difference in survival rates
82 yo man with probable ethanol cirrhosis & 4.1 cm mid liver biopsy-proven HCC: Chemoembolization & RFA

40 months later
CT: ↓↓ size (1.8 cm) & no enhancement
Combination Local Ablation + Other Therapies for Early Stage HCC

- Lin, 2018: network meta-analysis
 - local tumor progression at 3 years
 - RFA plus radiotherapy and TACE better than resection, although resection better than RFA alone
 - overall recurrence
 - resection best for <3 y
 - RFA + adjuvant therapies better if >3 y
Advantages of Percutaneous Ablation Therapy

- Minimally invasive
- Outpatient or minimal hospital stay
- Low mortality and morbidity
 - less than surgery
- Minimal damage of non-neoplastic liver tissue
- Usually easily repeated
Conclusions

• Hyperthermic ablation: highly effective local control of very early & early stage HCC

• MWA appears better for control of early stage tumors >3 cm

• Local ablation is probably comparable to resection for very early stage HCC (≤2 cm)

• Resection may be better than RFA for HCC>2-3 cm but
 – better results w MWA & LA+transarterial Rx