Featured Publications
A Founder Mutation as a Cause of Cerebral Cavernous Malformation in Hispanic Americans
Günel M, Awad I, Finberg K, Anson J, Steinberg G, Batjer H, Kopitnik T, Morrison L, Giannotta S, Nelson-Williams C, Lifton R. A Founder Mutation as a Cause of Cerebral Cavernous Malformation in Hispanic Americans. New England Journal Of Medicine 1996, 334: 946-951. PMID: 8596595, DOI: 10.1056/nejm199604113341503.Peer-Reviewed Original ResearchConceptsCavernous malformationsCerebral cavernous malformationsSporadic casesFamilial diseaseSame mutationSporadic cavernous malformationsDevelopment of symptomsHispanic AmericansCerebral hemorrhageVascular diseaseAsymptomatic carriersHigh prevalenceClinical casesMalformationsDiseaseFounder mutationPatientsAge dependenceAffected membersKindredsMarkersMexican descentEthnic groupsMutationsSame alleleGenomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO
Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Özduman K, Avşar T, Li J, Murray PB, Henegariu O, Yilmaz S, Günel JM, Carrión-Grant G, Yılmaz B, Grady C, Tanrıkulu B, Bakırcıoğlu M, Kaymakçalan H, Caglayan AO, Sencar L, Ceyhun E, Atik AF, Bayri Y, Bai H, Kolb LE, Hebert RM, Omay SB, Mishra-Gorur K, Choi M, Overton JD, Holland EC, Mane S, State MW, Bilgüvar K, Baehring JM, Gutin PH, Piepmeier JM, Vortmeyer A, Brennan CW, Pamir MN, Kılıç T, Lifton RP, Noonan JP, Yasuno K, Günel M. Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339: 1077-1080. PMID: 23348505, PMCID: PMC4808587, DOI: 10.1126/science.1233009.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overBrain NeoplasmsChromosomes, Human, Pair 22DNA Mutational AnalysisFemaleGenes, Neurofibromatosis 2Genomic InstabilityGenomicsHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMaleMeningeal NeoplasmsMeningiomaMiddle AgedMutationNeoplasm GradingProto-Oncogene Proteins c-aktReceptors, G-Protein-CoupledSmoothened ReceptorTumor Necrosis Factor Receptor-Associated Peptides and ProteinsSomatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis
Erson-Omay EZ, Çağlayan AO, Schultz N, Weinhold N, Omay SB, Özduman K, Köksal Y, Li J, Serin Harmancı A, Clark V, Carrión-Grant G, Baranoski J, Çağlar C, Barak T, Coşkun S, Baran B, Köse D, Sun J, Bakırcıoğlu M, Moliterno Günel J, Pamir MN, Mishra-Gorur K, Bilguvar K, Yasuno K, Vortmeyer A, Huttner AJ, Sander C, Günel M. Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro-Oncology 2015, 17: 1356-1364. PMID: 25740784, PMCID: PMC4578578, DOI: 10.1093/neuonc/nov027.Peer-Reviewed Original ResearchConceptsHigh-grade gliomasSomatic POLE mutationsPOLE mutationsMalignant high-grade gliomasLonger progression-free survivalProgression-free survivalSomatic mutationsOverall survivalPediatric patientsBetter prognosisClinical featuresImproved prognosisClinical behaviorImmune cellsBizarre cellsAggressive formGlioblastoma multiformeDisease pathophysiologyMolecular subgroupsHomozygous germline mutationGermline mutationsPrognosisGlioma subtypesComprehensive genomic analysisDistinct subgroupsIntegrated genomic analyses of de novo pathways underlying atypical meningiomas
Harmancı AS, Youngblood MW, Clark VE, Coşkun S, Henegariu O, Duran D, Erson-Omay EZ, Kaulen LD, Lee TI, Abraham BJ, Simon M, Krischek B, Timmer M, Goldbrunner R, Omay SB, Baranoski J, Baran B, Carrión-Grant G, Bai H, Mishra-Gorur K, Schramm J, Moliterno J, Vortmeyer AO, Bilgüvar K, Yasuno K, Young RA, Günel M. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications 2017, 8: 14433. PMID: 28195122, PMCID: PMC5316884, DOI: 10.1038/ncomms14433.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesBrain NeoplasmsCell Transformation, NeoplasticChromosomal InstabilityCluster AnalysisDNA MethylationE2F2 Transcription FactorEnhancer of Zeste Homolog 2 ProteinEpigenomicsExomeForkhead Box Protein M1Gene Expression ProfilingGene Expression Regulation, NeoplasticGene Regulatory NetworksGene SilencingGenes, Neurofibromatosis 2GenomeGenomicsGenotyping TechniquesHuman Embryonic Stem CellsHumansJumonji Domain-Containing Histone DemethylasesMeningeal NeoplasmsMeningiomaMolecular Probe TechniquesMutationPhenotypePolycomb Repressive Complex 2Promoter Regions, GeneticRNA, MessengerSequence AnalysisSignal TransductionSMARCB1 ProteinTranscriptomeConceptsPolycomb repressive complex 2Human embryonic stem cellsRepressive complex 2Integrated genomic analysisEmbryonic stem cellsDe novo pathwayH3K27me3 signalsTranscriptional networksPRC2 complexEpigenomic analysisCellular statesCatalytic subunitGenomic analysisGenomic instabilityHypermethylated phenotypeGenomic landscapeNovo pathwayDisplay lossStem cellsPotential therapeutic targetExhibit upregulationPromoter mutationsTherapeutic targetMutationsComplexes 2
2022
Cross-platform analysis reveals cellular and molecular landscape of glioblastoma invasion
Chen AT, Xiao Y, Tang X, Baqri M, Gao X, Reschke M, Sheu WC, Long G, Zhou Y, Deng G, Zhang S, Deng Y, Bai Z, Kim D, Huttner A, Kunes R, Günel M, Moliterno J, Saltzman WM, Fan R, Zhou J. Cross-platform analysis reveals cellular and molecular landscape of glioblastoma invasion. Neuro-Oncology 2022, 25: 482-494. PMID: 35901838, PMCID: PMC10013636, DOI: 10.1093/neuonc/noac186.Peer-Reviewed Original ResearchConceptsCrystallin alpha BTumor invasionGBM invasionHistology samplesMolecular landscapeTreatment of glioblastomaPostoperative recurrenceGBM patientsInvasive glioblastomaResection modelGlioblastomaNon-invasive counterpartsGBM samplesGlioblastoma invasionCD44PatientsInvasionAlpha BCellular levelTranscriptomic featuresRNA sequencing dataRecurrenceHistology stainsLevelsDiseaseInterferon-γ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells
Parmigiani E, Ivanek R, Rolando C, Hafen K, Turchinovich G, Lehmann FM, Gerber A, Brkic S, Frank S, Meyer SC, Wakimoto H, Günel M, Louvi A, Mariani L, Finke D, Holländer G, Hutter G, Tussiwand R, Taylor V, Giachino C. Interferon-γ resistance and immune evasion in glioma develop via Notch-regulated co-evolution of malignant and immune cells. Developmental Cell 2022, 57: 1847-1865.e9. PMID: 35803280, DOI: 10.1016/j.devcel.2022.06.006.Peer-Reviewed Original ResearchConceptsTumor-associated microglia/macrophagesGlioma cellsImmune surveillanceMicroglia/macrophagesImmune cell populationsBrain tumor cellsMouse glioma cellsCytokine expressionImmune attackImmune cellsMouse modelImmune evasionSuppression of NotchTumor cellsNotch inhibitionTumor initiationUpregulation of oncogenesNotch activityCell populationsGliomasCellsSurveillanceLow Notch activityNiche controlTherapy
2017
AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma
Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, Errami Y, Dong MB, Martinez MA, Zhang S, Renauer P, Bilguvar K, Gunel M, Sharp PA, Zhang F, Platt RJ, Chen S. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nature Neuroscience 2017, 20: 1329-1341. PMID: 28805815, PMCID: PMC5614841, DOI: 10.1038/nn.4620.Peer-Reviewed Original ResearchUse of telomerase promoter mutations to mark specific molecular subsets with reciprocal clinical behavior in IDH mutant and IDH wild-type diffuse gliomas.
Akyerli CB, Yüksel Ş, Can Ö, Erson-Omay EZ, Oktay Y, Coşgun E, Ülgen E, Erdemgil Y, Sav A, von Deimling A, Günel M, Yakıcıer MC, Pamir MN, Özduman K. Use of telomerase promoter mutations to mark specific molecular subsets with reciprocal clinical behavior in IDH mutant and IDH wild-type diffuse gliomas. Journal Of Neurosurgery 2017, 128: 1102-1114. PMID: 28621624, DOI: 10.3171/2016.11.jns16973.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAge FactorsAgedAged, 80 and overBrain NeoplasmsCohort StudiesDNA Mutational AnalysisFemaleGenetic MarkersGliomaHumansIsocitrate DehydrogenaseKaplan-Meier EstimateKi-67 AntigenMaleMiddle AgedMutationPromoter Regions, GeneticSurvival AnalysisTelomeraseTreatment OutcomeYoung AdultConceptsMolecular subsetsIDH-wt gliomasIDH wild-type diffuse gliomasDiffuse gliomasIDH-mut gliomasClinical behaviorTERTp-mutHigh Ki-67 labeling indexKi-67 labeling indexDouble-negative subsetObjective Recent studiesClinical tumor behaviorDifferent tumor biologySpecific molecular subsetsTERT promoter mutationsEpidermal growth factor receptorTensin homolog (PTEN) mutationsTelomerase promoter mutationsCumulative followGrowth factor receptorSurgical cohortMalignant degenerationClinical parametersHistopathological diagnosisCombined status
2004
KRIT1/Cerebral Cavernous Malformation 1 Protein Localizes to Vascular Endothelium, Astrocytes, and Pyramidal Cells of the Adult Human Cerebral Cortex
Guzeloglu-Kayisli O, Amankulor NM, Voorhees J, Luleci G, Lifton RP, Gunel M. KRIT1/Cerebral Cavernous Malformation 1 Protein Localizes to Vascular Endothelium, Astrocytes, and Pyramidal Cells of the Adult Human Cerebral Cortex. Neurosurgery 2004, 54: 943-949. PMID: 15046662, DOI: 10.1227/01.neu.0000114512.59624.a5.Peer-Reviewed Original ResearchMeSH KeywordsAdultAstrocytesBlotting, WesternBrain NeoplasmsCerebral CortexChromosome AberrationsEndothelium, VascularGene Expression Regulation, NeoplasticGenes, DominantHemangioma, CavernousHemangioma, Cavernous, Central Nervous SystemHumansImmunoenzyme TechniquesKRIT1 ProteinMicrotubule-Associated ProteinsProto-Oncogene ProteinsPyramidal CellsConceptsCerebral cavernous malformationsCerebral cortexCavernous malformationsVascular endotheliumCentral nervous system vasculatureAdult human cerebral cortexEndothelial cellsCerebral cavernous malformation lesionsBlood-brain barrierAstrocytic foot processesFamilial cerebral cavernous malformationsHuman cerebral cortexCentral nervous systemAutosomal dominant disorderCerebral angiogenesisPyramidal neuronsPyramidal cellsBlood-organ barriersNervous systemWhite pulpRed pulpIntense stainingWestern blottingFoot processesCardiac myocytes
1996
Genetic heterogeneity of inherited cerebral cavernous malformation.
Günel M, Awad I, Finberg K, Steinberg G, Craig H, Cepeda O, Carol N, Lifton R. Genetic heterogeneity of inherited cerebral cavernous malformation. Neurosurgery 1996, 38: 1265-71. PMID: 8727164, DOI: 10.1097/00006123-199606000-00059.Peer-Reviewed Original ResearchConceptsGenetic analysisCauses of CCMsCerebral cavernous malformationsHuman chromosome 7Second geneIndependent inheritanceMutant geneChromosome 7Genetic markersGenesLong armGenetic heterogeneityMutationsCavernous malformationsInheritanceFamilyAutosomal dominant transmissionClinical featuresGenetic testingDominant transmissionKindredsMarkersNon-Hispanic familiesMalformationsDisordersGenetic Heterogeneity of Inherited Cerebral Cavernous Malformation
Günel M, Awad I, Finberg K, Steinberg G, Craig H, Cepeda O, Nelson-Williams C, Lifton R. Genetic Heterogeneity of Inherited Cerebral Cavernous Malformation. Neurosurgery 1996, 38: 1265-1271. DOI: 10.1227/00006123-199606000-00059.Peer-Reviewed Original ResearchConceptsGenetic analysisCauses of CCMsCerebral cavernous malformationsHuman chromosome 7Second geneIndependent inheritanceMutant geneChromosome 7Genetic markersGenesLong armGenetic heterogeneityMutationsCavernous malformationsInheritanceFamilyAutosomal dominant transmissionClinical featuresGenetic testingDominant transmissionKindredsMarkersNon-Hispanic familiesMalformationsDisorders