2022
Zero-preserving imputation of single-cell RNA-seq data
Linderman GC, Zhao J, Roulis M, Bielecki P, Flavell RA, Nadler B, Kluger Y. Zero-preserving imputation of single-cell RNA-seq data. Nature Communications 2022, 13: 192. PMID: 35017482, PMCID: PMC8752663, DOI: 10.1038/s41467-021-27729-z.Peer-Reviewed Original Research
2021
Detection of differentially abundant cell subpopulations in scRNA-seq data
Zhao J, Jaffe A, Li H, Lindenbaum O, Sefik E, Jackson R, Cheng X, Flavell RA, Kluger Y. Detection of differentially abundant cell subpopulations in scRNA-seq data. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2100293118. PMID: 34001664, PMCID: PMC8179149, DOI: 10.1073/pnas.2100293118.Peer-Reviewed Original ResearchMeSH KeywordsAgingB-LymphocytesBrainCell LineageCOVID-19CytokinesDatasets as TopicDendritic CellsGene Expression ProfilingGene Expression RegulationHigh-Throughput Nucleotide SequencingHumansMelanomaMonocytesPhenotypeRNA, Small CytoplasmicSARS-CoV-2Severity of Illness IndexSingle-Cell AnalysisSkin NeoplasmsT-LymphocytesTranscriptomeConceptsDA subpopulationsIll COVID-19 patientsImmune checkpoint therapyCOVID-19 patientsSingle-cell RNA sequencing analysisCheckpoint therapyBrain tissueCell subpopulationsRNA sequencing analysisTime pointsSubpopulationsDiseased individualsDistinct phenotypesOriginal studyCell typesAbundant subpopulationSequencing analysisCellsDA measuresPhenotypeImportant differencesNonrespondersPatientsTherapy
This site is protected by hCaptcha and its Privacy Policy and Terms of Service apply