Treatment of Tumors Resistant to PD-1 inhibitors

Harriet Kluger, MD
Professor of Medicine (Medical Oncology), Yale School of Medicine
Deputy Section Chief, Medical Oncology
Associate Cancer Center Director for Education, Training and Faculty Development
Director, Yale SPORE in Skin Cancer

Disclosures: Research Support – Merck, BMS, Apexigen
Consultant fees: Genentech, Corvus, Nektar, Biodesix, Iovance, Celldex, Pfizer
Overview

• Metastatic melanoma as a model disease for immunotherapy, a disease that affects ~10,000 individuals per year in the US

• Advances in immune therapy in the past decade

• Current challenges

• New initiatives to overcome resistance to immune checkpoint inhibitors
James P. Allison • Tasuku Honjo
“for their discovery of cancer therapy by inhibition of negative immune regulation”
Key Randomized Trials for Stage IV Melanoma

<table>
<thead>
<tr>
<th>Study</th>
<th>Trial Regimen</th>
<th>No. of Patients</th>
<th>Response Rate %</th>
<th>Median Survival mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costanzi et al.</td>
<td>Carmustine, hydroxyurea, and dacarbazine with or without BCG versus</td>
<td>256</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dacarbazine and BCG</td>
<td>130</td>
<td>18</td>
<td>6.9</td>
</tr>
<tr>
<td>Buzaid et al.</td>
<td>Cisplatin, vinblastine, and dacarbazine versus</td>
<td>46</td>
<td>24</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Dacarbazine</td>
<td>45</td>
<td>11</td>
<td>7.0</td>
</tr>
<tr>
<td>Chapman et al.</td>
<td>Cisplatin, dacarbazine, carmustine, and tamoxifen versus Dacarbazine</td>
<td>108</td>
<td>18</td>
<td>7.0</td>
</tr>
<tr>
<td>Cocconi et al.</td>
<td>Dacarbazine and tamoxifen versus Dacarbazine</td>
<td>60</td>
<td>28‡</td>
<td>10.7‡</td>
</tr>
<tr>
<td></td>
<td>Dacarbazine</td>
<td>52</td>
<td>12</td>
<td>6.4</td>
</tr>
<tr>
<td>Rusthowen et al.</td>
<td>Cisplatin, dacarbazine, carmustine, and tamoxifen versus</td>
<td>98</td>
<td>30</td>
<td>Men, 6.4; women, 6.9</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, dacarbazine, and carmustine</td>
<td>97</td>
<td>21</td>
<td>Men, 6.4; women, 7.1</td>
</tr>
<tr>
<td>Falkson et al.</td>
<td>Dacarbazine and interferon alfa versus Dacarbazine</td>
<td>30</td>
<td>53</td>
<td>17.6§</td>
</tr>
<tr>
<td></td>
<td>Dacarbazine</td>
<td>30</td>
<td>18</td>
<td>9.6</td>
</tr>
<tr>
<td>Falkson et al.</td>
<td>Dacarbazine, interferon alfa with or without tamoxifen versus Dacarbazine</td>
<td>126</td>
<td>16</td>
<td>With tamoxifen, 9.5; without tamoxifen, 9.3; With tamoxifen, 8.4; without tamoxifen, 10.0</td>
</tr>
<tr>
<td></td>
<td>Dacarbazine with or without tamoxifen</td>
<td>129</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Kellholz et al.</td>
<td>Interleukin-2 (decrescendo regimen) and interferon alfa versus</td>
<td>66</td>
<td>18</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, interleukin-2, and interferon alfa</td>
<td>60</td>
<td>33; overall survival same</td>
<td>9.0</td>
</tr>
<tr>
<td>Rosenberg et al.</td>
<td>Cisplatin, dacarbazine, and tamoxifen</td>
<td>52</td>
<td>27</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, dacarbazine, tamoxifen, high-dose interleukin-2, and interferon alfa</td>
<td>50</td>
<td>44; overall survival worse</td>
<td>10.7</td>
</tr>
<tr>
<td>Eton et al.</td>
<td>Cisplatin, vinblastine, and dacarbazine versus</td>
<td>92</td>
<td>25</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa (sequential)</td>
<td>91</td>
<td>48</td>
<td>11.8</td>
</tr>
<tr>
<td>Kellholz et al.</td>
<td>Cisplatin, dacarbazine, interferon alfa versus</td>
<td>180</td>
<td>23</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, dacarbazine, interferon alfa and interleukin-2 versus</td>
<td>183</td>
<td>21</td>
<td>9.0</td>
</tr>
<tr>
<td>Atkins et al.</td>
<td>Cisplatin, vinblastine, and dacarbazine versus</td>
<td>201</td>
<td>11</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>Cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa (concurrent)</td>
<td>204</td>
<td>17</td>
<td>8.4</td>
</tr>
</tbody>
</table>

All study data are taken from Atkins et al.

**BCG denotes bacille Calmette–Guérin.

‡ P = 0.03.

§ P = 0.02.

§§ P = 0.01.
Drugs and regimens approved since 2011

BRAFi/MEKi for Braf mutant melanoma only:
- Vemurafenib
- Vemurafenib + cobimetinib
- Dabrafenib
- Dabrafenib + trametinib (both for metastatic and adjuvant therapy)
- Binimetinib + encorafenib

Immune therapies:
- Ipilimumab (both for metastatic and adjuvant therapy)
- Nivolumab (both for metastatic and adjuvant therapy)
- Pembrolizumab (both for metastatic and adjuvant therapy)
- Ipilimumab + nivolumab
- TVEC
Overall survival in patients with metastatic melanoma prior to 2011

Surgery\(^1\)

Chemotherapy\(^2,3\)

Presented by:
Alex Menzies
ASCO 2017
Overall Survival: Metastatic Melanoma Phase III Studies – A Menzies, ASCO 2017

PD-1 inhibitors: Phase I nivolumab trial RESPONDERS TIME ON STUDY

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Diagnosis</th>
<th>Time on Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Melanoma</td>
<td>18+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>8+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>9+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>9+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>6+ months</td>
</tr>
<tr>
<td>3</td>
<td>Melanoma</td>
<td>14+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>7+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>6+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>5+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>5+ months</td>
</tr>
<tr>
<td>10</td>
<td>Melanoma</td>
<td>12+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>8+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>8+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>8+ months</td>
</tr>
<tr>
<td></td>
<td>Melanoma</td>
<td>7+ months</td>
</tr>
</tbody>
</table>

As of May, 2010

Sznol, et al., ASCO 2010
Ipilimumab + Nivolumab (Wolchok, Kluger... Sznol, NEJM 2013)

CTLA-4 = cytotoxic T-lymphocyte-associated antigen 4; MHC = major histocompatibility complex; PD-1 = programmed death-1; PD-L1 = programmed death ligand 1; TCR = T-cell receptor.
Phase 1 CA209-004 Study Design

Concurrent Therapy

Cohort 1
(N = 14)
- Nivo 0.3 + Ipi 3
- Q3W x 4
- Nivo 0.3
- Q3W x 4
- Nivo 0.3 + Ipi 3
- Q12W x 8

Cohort 2
(N = 17)
- Nivo 1 + Ipi 3
- Q3W x 4
- Nivo 1
- Q3W x 4
- Nivo 1 + Ipi 3
- Q12W x 8

Cohort 3
(N = 6)
- Nivo 3 + Ipi 3
- Q3W x 4
- Nivo 3
- Q3W x 4
- Nivo 3 + Ipi 3
- Q12W x 8

Cohort 2a
(N = 16)
- Nivo 3 + Ipi 1
- Q3W x 4
- Nivo 3
- Q3W x 4
- Nivo 3 + Ipi 1
- Q12W x 8

Cohort 8
(N = 41)
- Nivo 1 + Ipi 3
- Q3W x 4
- Nivo 3
- Q3W x 4
- Nivo 3
- Q2W x ≤48
Characteristics of Response

On treatment
Off treatment
Ongoing response
First response

Time Since Treatment Initiation (months)

Nivo 0.3 + Ipi 3 (Cohort 1)
Nivo 1 + Ipi 3 (Cohort 2)
Nivo 3 + Ipi 1 (Cohort 2a)
Nivo 3 + Ipi 3 (Cohort 3)
Nivo 1 + Ipi 3 (Cohort 8)
Nivo 1 (Cohort 6)
Nivo 3 (Cohort 7)

Concurrent Therapy
Sequenced Therapy

June 2014 data analysis.
All dose units are mg/kg.

Kluger et al, ESMO 2014
Callahan, Kluger et al, JCO 2018
CA209-067: Study Design (Wolchok et al)

Randomized, double-blind, phase III study to compare NIVO + IPI or NIVO alone to IPI alone

- Unresectable or Metastatic Melanoma
 - Previously untreated
 - 945 patients

Randomize 1:1:1

Stratify by:
- PD-L1 expression*
- BRAF status
- AJCC M stage

N=314

NIVO 1 mg/kg + IPI 3 mg/kg Q3W for 4 doses then NIVO 3 mg/kg Q2W

N=316

NIVO 3 mg/kg Q2W + IPI-matched placebo

N=315

IPI 3 mg/kg Q3W for 4 doses + NIVO-matched placebo

Treat until progression** or unacceptable toxicity

*Verified PD-L1 assay with 5% expression level was used for the stratification of patients; validated PD-L1 assay was used for efficacy analyses.

**Patients could have been treated beyond progression under protocol-defined circumstances.
Response to Treatment

<table>
<thead>
<tr>
<th></th>
<th>NIVO + IPI (N=314)</th>
<th>NIVO (N=316)</th>
<th>IPI (N=315)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR, % (95% CI)</td>
<td>57.6 (52.0–63.2)</td>
<td>43.7 (38.1–49.3)</td>
<td>19.0 (14.9–23.8)</td>
</tr>
<tr>
<td>Two-sided P value vs IPI</td>
<td><0.001</td>
<td><0.001</td>
<td>--</td>
</tr>
<tr>
<td>Best overall response — %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete response</td>
<td>11.5</td>
<td>8.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Partial response</td>
<td>46.2</td>
<td>34.8</td>
<td>16.8</td>
</tr>
<tr>
<td>Stable disease</td>
<td>13.1</td>
<td>10.8</td>
<td>21.9</td>
</tr>
<tr>
<td>Progressive disease</td>
<td>22.6</td>
<td>37.7</td>
<td>48.9</td>
</tr>
<tr>
<td>Unknown</td>
<td>6.7</td>
<td>7.9</td>
<td>10.2</td>
</tr>
<tr>
<td>Duration of response (months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (95% CI)</td>
<td>NR (13.1, NR)</td>
<td>NR (11.7, NR)</td>
<td>NR (6.9, NR)</td>
</tr>
</tbody>
</table>

*By RECIST v1.1.
NR, not reached.
Unfortunately, NO!!!!
Challenges for Melanoma Researchers

• Cost reduction (drugs cost hundreds of thousands) via improved patient selection - predictive biomarkers needed

• Control of autoimmune toxicities – occur in > 50% of patients treated with ipilimumab+nivolumab

• Patients with autoimmune disorders

• Targeted therapy for the 40% who are WT for both BRAF and NRAS

• Resistance to BRAFi+MEKi combinations has to be overcome

• Outcomes still dismal for uveal melanoma and perhaps less good for mucosal melanomas

• Brain metastasis population needs new approaches

• ~50% of patients do not respond to current immune therapies, and many develop resistance over time – new approaches needed for melanoma that is resistant to PD-1 inhibitors
Studies of other immune therapy combinations for tumors resistant to anti-PD-1 – at Yale and elsewhere

• Combinations with cytokine therapies, e.g. IL2, NKTR 214 (Pegylated IL2), IL-18, IL-12, Interferon alpha and others

• Combinations with adoptive cell therapy regimens

• PD-1 inhibitors + other immune checkpoint modulators, such as LAG-3 inhibitors, TIGIT inhibitors, OX40 agonists and others

• Combinations with targeted therapies and chemotherapy

• Combinations with vaccines

*hundreds of combinations currently in clinical trials
Potential mechanisms of resistance to PD-1 inhibitors

• lack of TIL
• loss of antigen presentation
• T cell exhaustion
• lack of PD-L1 in the tumor or tumor microenvironment
• other immune co-inhibitory molecules on TIL
• Other immune inhibitory cells, such as MDSC, T regs

*sCo-targeting TAMs is the approach currently being studied in our group – αPD-1, αCSF1R and CD40a; collaboration with Kaech and Bosenberg groups
Animal models driven by BrafV600E, Pten$^{-/-}$, Cdkn2a$^{-/-}$, YUMM1.7 and YUMM1.7ER, treated with αPD-1

Bosenberg et. al
Tumor infiltrating immune cells in GEMM melanoma tumors

Perry et al., J. Experimental Medicine 2018
Combination of CD40a and CSF1Ri vs monotherapy

![Graph showing tumor growth over days post tumor induction for control, CD40, CSF1Ri, and CD40 + CSF1Ri treatments.](image)

Perry et al., Journal of Experimental Medicine, 2018
CD40a + CSF1Ri drives a TAM inflammatory transcriptional program
Effects on T cells

%CD8 T cells of total T cells

PD1 MFI on CD8+ T cells

Control CD40 agonist CSF1Ri CD40 agonist +CSF1Ri

Control CD40 agonist CSF1Ri CD40 agonist +CSF1Ri

- ** p < 0.01
- ns: not significant
Combinations with PD-1 inhibitors

Survival

- Control
- αPD1
- Cd40a
- αCSF1R
- αPD1+CD40a
- αPD1+αCSF1R
- CD40a+ αCSF1R
- Triple

Tumor volume (mm³)

- αPD-1
- CD40a+CSF1Ri
- Triple therapy
RENCA murine kidney cancer model
Bench to bedside

• Collaborations formed with Bristol Myers Squibb and Apexigen

• αPD-1 (nivolumab), αCSF1R (cabiralizumab) and CD40a (APX005M)

• Cabiralizumab and nivo given to hundreds of patients, modest activity in melanoma

• CD40a have significant activity in melanoma, even as single agent, in older trials

• Oligo-site phase I/II trial of APX005M plus nivo in melanoma and lung cancer initiated in 2017
Melanoma patient on nivo+APX005M responding after initial CR to pembrolizumab lasting > 3 years followed by progression pembrolizumab
Phase I/II study of cabiralizumab (αCSF1R) and APX005M (CD40a) with and without nivolumab in patients with melanoma, RCC or NSCLC whose disease progressed on αPD1.

PHASE I

- Cohort 1: Cabiralizumab + APX005M 0.03 mg/kg
- Cohort 2: Cabiralizumab + APX005M 0.03 mg/kg + nivolumab 240 mg
- Cohort 3: Cabiralizumab + APX005M 0.1 mg/kg
- Cohort 4: Cabiralizumab + APX005M 0.1 mg/kg + nivolumab 240 mg
- Cohort 5: Cabiralizumab + APX005M 0.3 mg/kg
- Cohort 6: Cabiralizumab + APX005M 0.3 mg/kg + nivolumab 240 mg

PHASE II

First stage: 13 patients treated with Cabiralizumab, Nivolumab and APX005M i.v. q3w

- ≤ 1 responders: Stop study
- ≥ 1 responders: Enroll 21 additional patients, 2nd stage

Primary objective: response rate and safety
Secondary objective: Progression free and overall survival
Exploratory biomarker end points

Identical study design for RCC and NSCLC

Pis: Harriet Kluger, Sarah Weiss
Blood collection and baseline imaging → Cycle 1

Blood collection → Cycle 2

Blood collection → Cycle 3

Blood collection → Cycle 4

Treatment: Every 3 weeks

Weeks 0 1 2 3 4 5 6 7 8 9 10

Response evaluation:
MRI brain + CT chest/abdomen/pelvis OR PET-CT every 4 cycles

Progression of disease

Blood collection → Cycle x

Pre-treatment biopsy → Mandatory biopsy
Phase I Updates

• Cohorts 1, 2 and 3 have been filled. Two patients with melanoma, 7 with RCC.

• Overall toxicities: peri-orbital edema, elevated CPK, AST and ALT, fevers and signs of cytokine release in first 48 hours

• Recommended phase II dose still to be determined

• Early flow cytometry studies (with Meffre lab), pre- and post-treatment:
 - changes in B cells, NK cells and monocytes in the circulation
 - increase in FAS expression on B cells
 - increase in HLA DR expression on monocytes
 - no change in T cell number, but increase in central memory T cells (CD45RO)
 - decrease in T regs, including Helios positive T regs
 - increase in proliferating T cells (Ki67 on CD4 positive cells)
Conclusions

• Despite progress in treating advanced melanoma, particularly with anti-PD1, not all patients respond.

• Multiple mechanisms of resistance described, including abundance of tumor associated macrophages and a paucity of T cell infiltration. These might be harnessed to develop new regimens for melanomas resistant to anti-PD-1.

• Co-targeting the innate and adaptive immune system with CSF1R inhibitor + CD40 agonist results in better anti-tumor activity than either alone and increases CD8 tumor content in animals.

• Treatment of mice bearing anti-PD-1 resistant tumors with these drugs in combination with nivolumab appears superior to all doublets, including αCSF1R+CD40a.

• Findings confirmed in Renca model, although the percent of mice with tumor rejection is lower, consistent with picture seen in humans.

• A clinical trial testing this finding has been initiated for patients with melanoma, renal cell carcinoma and non-small cell lung cancer.
Acknowledgements

• Yale lab collaborators: Susan Kaech, Marcus Bosenberg, Eric Meffre, Lucia Jilaveanu, William Damsky
• Lab members: Curtis Perry, Irina Krykbaeva, Christopher Zito, Lin Zhang
• Clinical collaborators: Mario Sznol, Sarah Weiss, Scott Gettinger, Roy Herbst, Michael Hurwitz
• Clinical research team: Neta Levitt, Amanda Ralabate
• Pharmaceutical collaborators: Serena Perna (BMS), Ovid Trifan (Apexigen)
• Funding for pre-clinical work: Yale SPORE in Skin Cancer, NIH K24, NIH K12, Yale Cancer Center