Welcome to Yale Cancer Answers with your host doctor Anees Chagpar. Yale Cancer Answers features the latest information on cancer care by welcoming oncologists and specialists who are on the forefront of the battle to fight cancer. This week, it’s a conversation about prostate cancer with Doctor Peter Humphrey.

I’m a practicing surgical pathologist which basically means that I look at a glass slide under a microscope and render a diagnosis, often cancer diagnosis on tissues that we received from other physicians, including biopsies and resections. Ever since I was very young and looked through a microscope at pond water when I was in elementary school, but it was actually taking...
0:01:15.583 –> 0:01:18.127 care of a patient in medical school
0:01:18.13 –> 0:01:20.938 that really helped direct me into
0:01:20.938 –> 0:01:25.06 pathology and if I can give that story.
0:01:25.06 –> 0:01:28.66 I was a third year
0:01:28.66 –> 0:01:29.46 medical student and
0:01:29.46 –> 0:01:33.078 hadn’t really decided on a specialty.
0:01:33.08 –> 0:01:34.785 And was considering a number
0:01:34.785 –> 0:01:35.808 of different specialties,
0:01:35.81 –> 0:01:38.46 including medicine and internal medicine.
0:01:38.46 –> 0:01:41.408 Pathology wasn’t so
0:01:41.408 –> 0:01:45.093 high on the list until
0:01:45.1 –> 0:01:48.39 there was an occurrence with one
0:01:48.39 –> 0:01:51.467 patient and she was on the internal
0:01:51.467 –> 0:01:54.47 medicine ward and she had rib pain
0:01:54.556 –> 0:01:57.64 and the radiologists were able to
0:01:57.64 –> 0:02:01.269 identify a lesion in the rib and
0:02:01.269 –> 0:02:03.185 the differential diagnosis that
0:02:03.185 –> 0:02:05.58 we considered clinically and the
0:02:05.65 –> 0:02:08.988 radiologist considered was quite lengthy
0:02:08.988 –> 0:02:13.017 so it really took a biopsy which
0:02:13.017 –> 0:02:15.699 then went to surgical pathology and
0:02:15.7 –> 0:02:17.698 in order to establish the diagnosis,
0:02:17.7 –> 0:02:20.832 and so I I went down to surgical pathology.
0:02:20.84 –> 0:02:23.605 the laboratory where the attending
0:02:23.605 –> 0:02:25.817 surgical pathologist was looking,
0:02:25.82 –> 0:02:28.16 at slides with their resident
0:02:28.16 –> 0:02:31.157 on the service and I asked if they
0:02:31.157 –> 0:02:33.185 had seen the biopsy from this
0:02:33.263 –> 0:02:36.119 particular patient and he said he had,
0:02:36.12 –> 0:02:38.64 and then he pulled out the slide
0:02:38.64 –> 0:02:41.192 and went through it and in pretty
short order said oh,
this is metastatic cancer from
the salivary gland,
which was a diagnosis that was not
really considered in this patient.
It turns out she did have a history of
salivary gland cancer 10 years prior
so it occurred to me that this was
the way to really help patients
by helping render diagnosis.
I find that fascinating, because certainly
if you had a patient with rib pain,
metastatic cancer from a salivary
gland would not be top of the list.
Did the pathologist know about the distant
did the pathologist know about the distant
diagnosis of salivary gland cancer?
I think this particular
cancer was so distinctive that
he was able to suspect salivary
gland cancer right away.
I’m not sure if he knew the history,
but he was an excellent
surgical pathologist and being
an excellent surgical pathologist
I’m sure he had asked the
resident for the history first,
as they examined the slide.
Yeah, it’s just absolutely fascinating,
but now you’ve kind of transitioned
still looking at cancers,
but now you’re into the world
0:03:56.178 –> 0:03:58.401 of genitourinary pathology,
0:03:58.401 –> 0:04:01.129 tell us a little bit more about how
0:04:01.129 –> 0:04:03.91 your interests transitioned to that.
0:04:06.7 –> 0:04:09.52 In residency a big
0:04:09.52 –> 0:04:11.776 part of pathology residency,
0:04:11.78 –> 0:04:13.32 which is pretty broad based,
0:04:13.32 –> 0:04:17.352 we rotate through a number of different
0:04:17.352 –> 0:04:19.626 services, subspecialty services and
0:04:19.626 –> 0:04:22.356 those services work with specific
0:04:22.36 –> 0:04:25 clinicians and it’s disease
0:04:25 –> 0:04:28.717 focused and usually organ site
0:04:28.72 –> 0:04:32.05 focused. For example,
0:04:32.05 –> 0:04:34.29 as a genitourinary pathologist,
0:04:34.29 –> 0:04:37.71 I interact very closely with the
0:04:37.71 –> 0:04:39.99 urologist and medical oncologist
0:04:40.078 –> 0:04:43.052 to treat urological cancers as well
0:04:43.052 –> 0:04:45.324 as radiologist and interventional
0:04:45.324 –> 0:04:47.342 radiologists to deal with these
0:04:47.342 –> 0:04:48.812 type of cancers and specifically
0:04:48.812 –> 0:04:50.609 for the genitourinary system,
0:04:50.61 –> 0:04:53.34 this is just an introduction.
0:04:53.34 –> 0:04:57.267 We basically address cancers that arise in
0:04:57.267 –> 0:05:01.239 the prostate and testis and bladder and
0:05:01.24 –> 0:05:06.288 kidney, so it turns out when you are
0:05:06.29 –> 0:05:07.808 in formative years,
0:05:07.808 –> 0:05:10.338 one should never underestimate
0:05:10.338 –> 0:05:13.808 how a single patient or a physician
0:05:13.808 –> 0:05:17.575 can impact the development of
0:05:17.575 –> 0:05:20.42 the individuals who are young and
0:05:20.42 –> 0:05:22.83 deciding in medical school or pathology.
0:05:24.57 –> 0:05:27.762 So I was a first year resident and
I rotated through the VA hospital which was right across from Duke University Hospital, which is where I did my residency. And there was a fascinating rotation, and another excellent surgical pathologist was the attending there, and we saw quite a lot of prostate cancer. And at the VA hospital, this was several decades ago, dating myself a number of decades ago, there was not much known about prostate cancer, and treatments were relatively limited, so it seemed to me that this was an area where there is much to be learned about diagnosis and prognosis as well as treatment of that particular cancer. So that’s really how I became interested as a first year pathology resident in genitourinary cancers, and specifically prostate cancer. Let’s dive a little bit more into prostate cancer. I think that so much of again, what we do is really dictated by the biopsies that we take. So if somebody has a mass in the prostate or an enlarged prostate...
prostate, even more globally, sometimes a biopsy will be done, and that’ll be sent to the pathologist and it’s really up to you to try to figure out is this cancer or is this something benign? And if it’s cancer, how bad of a cancer is it which really dictates is this something that we treat at all, or something that we simply watch? How do you make those decisions? How do you make that differentiation from benign to malignant and within malignant, the different grades of prostate cancer? So it’s really quite a long educational process to be able to diagnose benign versus malignant, and it turns out that what’s so fascinating is that every single biopsy is different, even if we render an umbrella diagnosis of benign tissue. For example, the lining tissue of the prostate. There could be a number of benign mimicker’s in there, meaning benign tissue looking like cancer under the microscope, but it’s not, and we have a differential diagnosis. We consider a number of different benign entities before deciding
on a malignant diagnosis, because that’s such a huge step to take for us and for the patient, and the patient’s treating physician. So that’s what I particularly enjoy, that diagnostic work and it can be arduous sometimes. Sometimes it’s very straightforward that a particular biopsy is benign and sometimes straightforward that it’s malignant, but other times there are benign conditions under the microscope that look like cancer and cancer that can look benign. So we’ve been fortunate in this area to have some tools to help us and those include antibodies that can help us recognize specific cells under the microscope and in certain cases that can be relayed to us, but it still requires judgment and having formed a differential diagnosis or consideration of what’s possible before we order those tests. On that issue, so once having established a diagnosis of malignancy, then the next step is to decide and this is so important for prostate cancer, how aggressive is it? Because it turns out most men who
Have prostate cancer will die with it rather than of it.
So there are a large number of prostate cancers that can grow very slowly and may not affect the man during his lifetime,
Yet it turns out that prostate cancer is the second most lethal cancer amongst American men by total numbers trailing only lung cancer.
So those are the cancers we want to specifically separate out from the more slowly growing ones.
And we do that under the microscope using a very powerful approach that is grade, as you suggest.
So what is grade?
It’s basically the way the cells grow within the prostate once we’ve identified them as cancer cells,
so we can look under the microscope and in their patterns there are specific patterns that are known to correlate with the outcome for the patient,
and so we have various tiers, various numbers we can apply and the most simple one that we use right now is grade group and that ranges from one to five.
One being the best outcome, and those patients are managed very differently from those who have a grade group five out of five, but there’s everything in between, so it’s really a spectrum. And therein lies again judgment as far as deciphering as you note, the detective work deciphering out the patterns that can help us assign a grade that indicates aggressiveness of that prostate cancer. One of the questions that I think always comes up is that it seems to be a little bit of art and a little bit of science. Looking at these patterns and trying to decipher is this lower grade? Is this a higher grade? How much of it is art, and how much of it is science and how sure are you at any given time of your diagnosis being correct? Interpretation of slides under the microscope is most definitely both art and science, so there’s much experience that one must have in order to recognize these patterns.
The science part is that we can use antibodies to help identify specific cells. The grading part remains, though, very much art and pattern recognition going forward in the future, and this has already started. We have tools that can help us recognize patterns even better and more quantitatively, and that’s through the use of artificial intelligence and machine learning. So all of that work has just started, but already I’ve had the opportunity to work in on a couple different projects and it turns out that the computer with specific algorithms can identify, can diagnose and grade prostate cancers just as well as a number of us who specialize in sub specializing in that particular area. I can’t wait to learn more about that, but first we need to take a short break for medical minute.

Please stay tuned to learn more about prostate cancer diagnosis and prognosis with my guest doctor Peter Humphrey. Funding for Yale Cancer Answers comes from AstraZeneca, dedicated to advancing options and providing hope for people living with cancer.
The American Cancer Society estimates that nearly 150,000 people in the US will be diagnosed with colorectal cancer this year alone. When detected early, colorectal cancer is easily treated and highly curable and men and women over the age of 45 should have regular colonoscopies to screen for the disease. Patients with colorectal cancer have more hope than ever before, thanks to increased access to advanced therapies and specialized care. Clinical trials are currently underway at federally designated Comprehensive Cancer Centers. Such as Yale Cancer Center and at Smilow Cancer Hospital to test innovative new treatments for colorectal cancer. Tumor gene analysis has helped improve management of colorectal cancer by identifying the patients most likely to benefit from chemotherapy and newer targeted agents, resulting in more patient specific treatment. More information is available at yalecancercenter.org. You’re listening to Connecticut Public Radio.
This is doctor Anees Chagpar and I'm joined tonight by my guest doctor Peter Humphrey. We're talking about prostate cancer diagnosis and prognosis, and right before the break we were talking about this magic that happens in the pathology lab. At least, it seems like magic to those of us who send them biopsies and magically get back a diagnosis that we then use to treat our patients and Doctor Humphrey was telling us that this is in part art, but it is in part science and that you're able to use antibodies and so on to help you in making that diagnosis and right before the break you started to talk Doctor Humphrey about artificial intelligence and how this might actually help us in making a diagnosis now, so that the computers might be able to make a diagnosis almost as well as an experienced pathologist. Tell us a little bit more about that. So we are in the very early pilot stage I would say as far as development of this tool, but I think it will be an important tool that can assist the pathologist and actually artificial intelligence
is being developed in many branches of medicine and radiology too, so it turns out that those parts of medicine that deal with diagnostic images like radiology and pathology are areas where there could be great benefit. From more standardization, I would say, and perhaps even quantitation, using computer assisted methods, so that’s already happening and actually happening very quickly as far as the research into this. And the use of computers and artificial intelligence. To develop algorithms, ways in which the computer can diagnose and even grade prostate cancer. So I’ve been fortunate enough to have been involved in a couple of these research studies and a number of us from around the world who are interested in prostate cancer and are genitourinary pathologists, and we’ve looked at hundreds of slides, all online, so these are all images diagnosable on our computer. And then we tested the algorithm and then the algorithm was tested against our diagnosis in grade versus collections
0:16:35.476 –> 0:16:38.598 of pathologists who were
0:16:38.6 –> 0:16:40.865 not sub specialized in
0:16:40.865 –> 0:16:43.173 prostate cancer diagnosis and the
0:16:43.173 –> 0:16:46.131 computer was actually just as good
0:16:46.131 –> 0:16:49.138 as our diagnosis and grading.
0:16:49.14 –> 0:16:51.82 So what does this mean for the future?
0:16:51.82 –> 0:16:53.94 Well, there are actually a lot of challenges.
0:16:55.148 –> 0:16:56.658 There are several algorithms that
0:16:56.658 –> 0:16:58.24 have already been published.
0:16:58.24 –> 0:17:00.85 Methods that the computer uses,
0:17:00.85 –> 0:17:03.622 and there’s a lot of standardization
0:17:03.622 –> 0:17:06.234 and validation that needs to occur
0:17:06.234 –> 0:17:07.939 so that a computer can use
0:17:07.94 –> 0:17:10.898 images from a particular laboratory
0:17:10.898 –> 0:17:13.613 and one particular hospital as far
0:17:13.613 –> 0:17:15.93 as the scanners they use to make
0:17:15.93 –> 0:17:18.591 those images and the way the slides
0:17:18.591 –> 0:17:20.756 are prepared that all of those
0:17:20.756 –> 0:17:23.478 factors can have a huge impact on the
0:17:23.478 –> 0:17:25.986 success or failure of the algorithms.
0:17:25.99 –> 0:17:28.694 My hope is that as far as standardization,
0:17:28.7 –> 0:17:31.472 it can be used as a tool to help
0:17:31.472 –> 0:17:33.931 hospitals where there may not be ready
0:17:33.931 –> 0:17:36.86 access to a genitourinary pathologist.
0:17:36.86 –> 0:17:38.253 And also I think for those of
0:17:38.253 –> 0:17:39.539 us who have high volumes
0:17:39.54 –> 0:17:42.204 and have a special sub specialized group
0:17:42.204 –> 0:17:45.157 of Geo pathologist as we do here at Yale,
0:17:45.16 –> 0:17:46.88 I think it might actually
0:17:46.88 –> 0:17:48.256 help us screen cases.
0:17:48.26 –> 0:17:50.801 So that the computer could actually help
identify through all these slides, identify the ones that need particular attention or standardized grading.

So there may be, for example, a difference of opinion about the grade of a specific cancer and the way we currently address this, and this is very important actually when there's a difficult case. we'll have a consensus conference, meaning that up to seven of us who are sub specialized in genitourinary pathology at Yale will meet around the microscope or in this area, from our computers and look at the images together to try to agree on a particular grade. In a difficult case or where it's a borderline case between grades for example. So maybe the computer could also provide help in standardizing those. Those sorts of assessments when it's a difficult or borderline case, it sounds like this is really exciting technology that might be able to provide a second opinion. But for right now, if you're a patient and you might not be at or near a large academic center, and you get a prostate biopsy, for example, how important is it for
you to get a second opinion on that biopsy from another human pathologist if a computer isn’t readily available? That’s a really critical question, and I think it’s important to know in discussions with your physician whether a genitourinary pathologist has reviewed the slides and it’s true that around the country there are just varying degrees of practice and varying volumes of practice, and so at a smaller hospital, maybe only a few prostate biopsies might be seen over a long period of time, and particularly in those cases where the pathologists may not feel as comfortable, or the treating physician may not feel as comfortable, it’s I think a useful step to seek a second opinion, and we see slides for second opinions all the time here from everyone. Actually from patients from treating physicians and from pathologists themselves, and this is an important quality to all these second opinions. And again we very commonly almost on a daily basis share cases here at Yale amongst our group of seven genitourinary pathologists And so are these second opinions when
0:20:25.81 –> 0:20:28.15 you go and you have your slides reviewed by somebody else?
0:20:28.15 –> 0:20:30.008 Or maybe the pathologists themselves sends it to another center to get reviewed if they’re not quite sure
0:20:30.01 –> 0:20:33.112 usually it is.
0:20:33.112 –> 0:20:35.786 So at least the cases that we receive here for second opinions.
0:20:35.79 –> 0:20:37.644 usually it is.
0:20:37.64 –> 0:20:38.75 about the diagnosis, is that covered by your insurance?
0:20:41.98 –> 0:20:43.532 Usually it is.
0:20:43.532 –> 0:20:46.388 So at least the cases that we receive here for second opinions.
0:20:46.388 –> 0:20:49.044 Usually it is.
0:20:49.95 –> 0:20:52.296 That’s good to know.
0:21:01.48 –> 0:21:03.41 another large academic center? If you go to a large academic center that it’s worthwhile getting your slides reviewed by another large academic center?
0:21:03.41 –> 0:21:05.735 I mean, how much heterogeneity is there between experienced genitourinary pathologists for example?
0:21:10.58 –> 0:21:12.81 and grading are still art,
0:21:12.81 –> 0:21:15.46 and grading are still art,
0:21:15.46 –> 0:21:18.638 There can be differences of opinion amongst even expert and experienced genitourinary pathologists and these tend to be the rarer or more borderline cases.
0:21:22.08 –> 0:21:24.533 There’s been a lot of research looking at variations or differences of opinion between pathologists and even between genitourinary pathologists, even did a study where I looked at agreement with myself so I
diagnosed and graded some slides and then came back sometime later to see if the diagnosis and grading were the same so the agreement is pretty good amongst genitourinary pathologists, but one should not hesitate in seeking a second opinion at another center with an established group of pathologists.

As we talk about that variability, all of these pathologists are looking at the same slides and I know that in other cancers we’ve talked on this show about this concept of heterogeneity that you might have a cancer that looks kind of different in one part than another and so I wonder, when you get these biopsies, we often send a core biopsy so a sampling of this tumor, how representative is that, and is it ever the case where you look at this and you kind of say I don’t know that this is representative? We need to get more tissue or are you usually pretty happy with the sample that you get? So that’s such a key question and
0:22:57.012 –> 0:23:00.036 really the practice of the biopsy
0:23:00.036 –> 0:23:03.627 as far as the prostate has changed so
0:23:03.627 –> 0:23:06.26 remarkably since when I was a resident.
0:23:06.26 –> 0:23:07.88 So back in the olden days,
0:23:07.88 –> 0:23:10.659 it was usually just one needle biopsy,
0:23:10.66 –> 0:23:12.73 digitally directed towards a palpable
0:23:12.73 –> 0:23:15.693 mass in the prostate by the examining
0:23:15.693 –> 0:23:18.549 physician and one single core was taken.
0:23:18.55 –> 0:23:20.32 So prostate cancer,
0:23:20.32 –> 0:23:22.68 heterogeneous concept of heterogeneity,
0:23:22.68 –> 0:23:24.906 and different areas of the prostate
0:23:24.91 –> 0:23:27.115 being actually of different grades
0:23:27.115 –> 0:23:28.879 and different aggressiveness
0:23:28.879 –> 0:23:30.921 is actually characteristic of
0:23:30.921 –> 0:23:32.965 prostate cancer and prostate
0:23:32.97 –> 0:23:35.22 cancer also tends to have multiple
0:23:35.22 –> 0:23:37.18 nodules within the same gland,
0:23:37.18 –> 0:23:38.77 so what’s been a real advantage
0:23:38.77 –> 0:23:41.146 is medical advances in radiology,
0:23:41.146 –> 0:23:44.562 and there are expert radiologists here who have
0:23:44.562 –> 0:23:46.602 actually helped develop this technique,
0:23:46.61 –> 0:23:50.04 and that’s a special type of MRI.
0:23:50.04 –> 0:23:53.095 Magnetic resonance imaging that’s used
0:23:53.095 –> 0:23:57.519 with ultrasound to guide the
0:23:57.52 –> 0:23:59.98 needle placement within the prostate.
0:23:59.98 –> 0:24:02.976 So now rather than one needle core,
0:24:02.98 –> 0:24:07.644 we often receive anywhere from 20 to even
0:24:07.644 –> 0:24:11.567 30 individual needle cores per patient.
0:24:11.57 –> 0:24:14.356 And the reason is that the radiologist
0:24:14.356 –> 0:24:17.034 now can identify areas where they’re
0:24:17.034 –> 0:24:19.854 suspicious of cancer and can specifically
0:24:19.854 –> 0:24:22.396 say based on their grading scheme,
0:24:22.396 –> 0:24:25.228 whether they think it’s a lower
0:24:25.228 –> 0:24:28.07 risk or a higher risk case so
0:24:28.07 –> 0:24:32.12 I do feel good about the
0:24:32.12 –> 0:24:34.805 representation for most patients and when
0:24:34.805 –> 0:24:38.227 the patients have undergone this
0:24:38.227 –> 0:24:41.515 type of imaging by the radiologists.
0:24:42.501 –> 0:24:44.136 Even though multiple needle cores
0:24:44.136 –> 0:24:45.949 are placed in a single nodule,
0:24:45.95 –> 0:24:49.136 it’s still possible that maybe
0:24:49.136 –> 0:24:52.849 a smaller high grade area was missed.
0:24:52.85 –> 0:24:54.368 Warning signs would be,
0:24:54.37 –> 0:24:57.146 what if the patient has a really high
0:24:57.146 –> 0:25:00.28 serum PSA prostate specific antigen level?
0:25:00.28 –> 0:25:02.452 Or what if this is radiologically
0:25:02.452 –> 0:25:04.4 a very aggressive looking lesion,
0:25:04.4 –> 0:25:06.848 but we don’t see that under the microscope?
0:25:06.85 –> 0:25:10.21 Then I would worry about
0:25:10.21 –> 0:25:12.1 the needle maybe not sampling
0:25:12.1 –> 0:25:13.51 the worst of the cancer.
0:25:13.54 –> 0:25:15.256 Yeah, it goes back to that
0:25:15.26 –> 0:25:17.676 concept of being a bit of a
0:25:17.676 –> 0:25:19.614 detective that we talked about before
0:25:19.614 –> 0:25:22.348 the break and the fact that the
0:25:22.348 –> 0:25:24.572 pathologist is really a key part
0:25:24.572 –> 0:25:26.342 of this multidisciplinary team that
0:25:28.66 –> 0:25:30.28 From the radiologist,
0:25:30.28 –> 0:25:31.495 from the surgeon.
0:25:31.5 –> 0:25:32.556 from the other physicians.
0:25:32.556 –> 0:25:34.316 who are involved
in the case to kind of put all of the pieces together to make sure that it all makes sense. That’s what I love about working here is working with so many bright and experienced physicians who are passionate about providing the highest level care and talking with them about what their perspective and view is on a specific patient. For example, if there is not a link made between pathology and what we see in the clinical setting that sort of correlation is so vital. Going back to that patient with pain in the rib. It was absolutely essential to know that the patient had a history of cancer 10 years ago to establish firmly that cancer scene and what we would do is compare slides. That cancer in the rib biopsy was the same as the cancer in the salivary gland, so we do that commonly to look back at old slides to see if cancer has come back and we think a cancer might have come back or spread so that comparison is a really important part.
of the detective work we do. And I think the other piece that’s so important is that it’s so critical in terms of what you do, especially in prostate cancer, to really nail down how aggressive this is because it is the difference these days between having more aggressive surgery or radiation versus watchful waiting.

Tell us a little bit more about how your decisions impact treatment and prognosis?

After establishing a diagnosis of prostate cancer, we assign the Gleason grade or score and that is a grade number we give for every single prostate cancer needle core in every case and a great group for that particular biopsy. If a patient had 10 positive cores with cancer in each one, we would assign an individual grade to each one, and actually I just gave a lecture this morning to the pathology residents on grading and staging. So if a patient had 10 positive cores with cancer in each one, we would assign an individual grade to each one. For the patients physician, a dominant prognostic indicator for us.
and the patient themselves.

For example, a grade Group One in a patient with a lower PSA might consider along with their physician, the physician might consider active surveillance or careful monitoring of that cancer compared to a grade Group 5 where everyone would agree this patient definitely needs active therapy.

Doctor Peter Humphrey is a professor of pathology at the Yale School of Medicine.

If you have questions, the address is cancer answers at yale.edu and past editions of the program are available in audio and written form at Yale Cancer Center Org.

We hope you’ll join us next week to learn more about the fight against cancer here on Connecticut Public radio funding for Yale Cancer Answers is provided by Smilow Cancer Hospital and AstraZeneca.