Jason Crawford, PhD
Professor of Chemistry and of Microbial PathogenesisDownloadHi-Res Photo
Cards
Appointments
Chemistry
Primary
Microbial Pathogenesis
Secondary
Contact Info
Institute of Biomolecular Design and Discovery
Institute of Biomolecular Design & Discovery, PO Box 27392
West Haven, CT 06516-7392
United States
About
Copy Link
Titles
Professor of Chemistry and of Microbial Pathogenesis
Appointments
Chemistry
ProfessorPrimaryMicrobial Pathogenesis
Associate Professor on TermSecondary
Other Departments & Organizations
- Chemistry
- CPIRT - Center for Pulmonary Injury, Inflammation, Repair and Therapeutics
- Developmental Therapeutics
- Immunology
- Institute of Biomolecular Design and Discovery
- Microbial Pathogenesis
- Microbiology
- Yale Cancer Center
- Yale Combined Program in the Biological and Biomedical Sciences (BBS)
Education & Training
- Postdoctoral Fellowship & Pathway to Independence Fellowship
- Harvard Medical School (2012)
- PhD
- Johns Hopkins University (2007)
- MA
- Johns Hopkins University (2003)
Research
Copy Link
Overview
Medical Research Interests
Bacteria; Chemistry; Host-Pathogen Interactions
ORCID
0000-0002-7583-1242- View Lab Website
Crawford Lab
Research at a Glance
Yale Co-Authors
Frequent collaborators of Jason Crawford's published research.
Publications Timeline
A big-picture view of Jason Crawford's research output by year.
Research Interests
Research topics Jason Crawford is interested in exploring.
Noah Wolcott Palm, PhD
Richard Flavell, PhD, FRS
Andrew Goodman, PhD
Caroline Helen Johnson, PhD
Weiwei (Wendy) Wang
Anjelica Martin, BS, RLATG
105Publications
5,461Citations
Bacteria
Host-Pathogen Interactions
Publications
2025
Discovery of a Widespread Polyamine–Low-Molecular-Weight Thiol Hybrid Pathway in Clostridioides difficile
Hunt R, Oh J, Jain A, Kuo T, Berardi D, Jian W, Song D, Wu Q, Goodman A, Palm N, Zimmermann M, Johnson C, Crawford J. Discovery of a Widespread Polyamine–Low-Molecular-Weight Thiol Hybrid Pathway in Clostridioides difficile. ACS Infectious Diseases 2025, 11: 2246-2264. PMID: 40671632, PMCID: PMC12403189, DOI: 10.1021/acsinfecdis.5c00286.Peer-Reviewed Original ResearchAltmetricMeSH Keywords and ConceptsConceptsLow-molecular-weight thiolsTwo-gene operonBacteroides uniformisExpression of polyaminesAssociated with diseaseColorectal cancerBiosynthesis genesCommunity-level changesClostridioides difficile infectionGut homeostasisGenetic screeningGI mucosal biopsiesRisk of colorectal cancerHybrid pathwayMicrobial metabolismHybrid metabolitesGastrointestinal (GI) tractClostridioides difficileDiverse collectionHost immunityMucosal biopsiesSevere inflammationGenesCationic metabolitesMucolytic agentTryptamine Metabolism and Functionalization in Gut Commensal Bacteria Expand Human Tryptamine Signaling Responses
Park H, Song D, Nguyen M, Palm N, Crawford J. Tryptamine Metabolism and Functionalization in Gut Commensal Bacteria Expand Human Tryptamine Signaling Responses. ACS Chemical Biology 2025, 20: 1775-1782. PMID: 40577169, PMCID: PMC12372651, DOI: 10.1021/acschembio.5c00313.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsG protein-coupled receptorsDownstream functional consequencesSmall moleculesHuman G protein-coupled receptorsRNA sequencing analysisFunctional small moleculesMelatonin receptor type 1AGut commensalsGut microbesSingle-cell RNA sequencing analysisSequence analysisUrea coreTryptamine moietyMethyl carbamateInhibitory concentrationGutGut tissueHalf-maximal inhibitory concentrationUncharacterized metabolitesBacterial cultureMelatonin receptorsSignal responseMoleculesHuman physiologyScreening analysisActivity of GPCR-targeted drugs influenced by human gut microbiota metabolism
Wu Q, Song D, Zhao Y, Verdegaal A, Turocy T, Duncan-Lowey B, Goodman A, Palm N, Crawford J. Activity of GPCR-targeted drugs influenced by human gut microbiota metabolism. Nature Chemistry 2025, 17: 808-821. PMID: 40181149, PMCID: PMC12412589, DOI: 10.1038/s41557-025-01789-w.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsGut commensal bacteriaCommensal bacteriaGut microbial communityGut microbiota metabolismDrug metabolismMetabolize drugsMicrobial communitiesIndividual speciesMetabolic modeMorganella morganiiMicrobiota metabolismGPCR-targeted drugsTricyclic systemThiophene motifsBacteria mixtureBacteriaMetabolomics investigationsMetabolismTargeting GPCRsDrug metabolitesPharmacological efficacyDrug transformationDrug structureDrugMetabolites
2024
Mucosal sugars delineate pyrazine vs pyrazinone autoinducer signaling in Klebsiella oxytoca
Hamchand R, Wang K, Song D, Palm N, Crawford J. Mucosal sugars delineate pyrazine vs pyrazinone autoinducer signaling in Klebsiella oxytoca. Nature Communications 2024, 15: 8902. PMID: 39406708, PMCID: PMC11480411, DOI: 10.1038/s41467-024-53185-6.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsK. oxytocaGeneral carbohydrate metabolismVirulence factor productionPLP-dependent enzymesAssociated with gutEnterobactin biosynthesisAutoinducer signalBacterial virulenceKlebsiella oxytocaSpecific carbohydratesHost immune responseCarbohydrate metabolismAutoinducerMolecular signalsVirulenceHistamine receptor H4BiosynthesisHost signalAcquisition responsesProtease inhibitorsPathwayHostLung pathologyLung isolationImmune responseBacterial small molecule metabolites implicated in gastrointestinal cancer development
Turocy T, Crawford J. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nature Reviews Microbiology 2024, 23: 106-121. PMID: 39375475, PMCID: PMC12377021, DOI: 10.1038/s41579-024-01103-4.Peer-Reviewed Original ResearchCitationsAltmetricConceptsSmall molecule metabolitesGastrointestinal cancer developmentAssociated with cancer progressionHost–microorganism interactionsGastrointestinal cancerCancer riskCancer developmentCancer progressionCancerTherapeutic interventionsMicrobiome membersHuman microbiomeBacterial speciesGlobal causeMolecular mechanismsMetabolitesRiskHuman AKR1C3 binds agonists of GPR84 and participates in an expanded polyamine pathway
Dudkina N, Park H, Song D, Jain A, Khan S, Flavell R, Johnson C, Palm N, Crawford J. Human AKR1C3 binds agonists of GPR84 and participates in an expanded polyamine pathway. Cell Chemical Biology 2024, 32: 126-144.e18. PMID: 39163853, PMCID: PMC11748234, DOI: 10.1016/j.chembiol.2024.07.011.Peer-Reviewed Original ResearchCitationsConceptsHuman aldo-keto reductase family 1 member C3Mammalian fatty acid synthaseDNA double-strand break responseDouble-strand break responseAldo-keto reductase family 1 member C3Associated with poor prognosisPolyamine pathwayFatty acid synthesisFatty acid synthaseAcid synthaseAKR1C3 activityPoor prognosisBiochemical roleAcid synthesisClinical significanceLigand screeningFerroptosis resistanceDNA damageAKR1C3Metabolic diseasesDiverse cancersDNANADPHAgonists of GPR84GPR84Enterococcus faecalis-derived adenine enhances enterohaemorrhagic Escherichia coli Type 3 Secretion System-dependent virulence
Martins F, Rosay T, Rajan A, Carter H, Turocy T, Mejia A, Crawford J, Maresso A, Sperandio V. Enterococcus faecalis-derived adenine enhances enterohaemorrhagic Escherichia coli Type 3 Secretion System-dependent virulence. Nature Microbiology 2024, 9: 2448-2461. PMID: 38965331, PMCID: PMC11585081, DOI: 10.1038/s41564-024-01747-1.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAdenineAnimalsCoculture TechniquesEnterococcus faecalisEnterocytesEnterohemorrhagic Escherichia coliEscherichia coli InfectionsEscherichia coli ProteinsGastrointestinal MicrobiomeGene Expression Regulation, BacterialHemolysin ProteinsHost-Pathogen InteractionsHumansHypoxanthineMiceType III Secretion SystemsVirulenceVirulence FactorsXanthineConceptsT3SS gene expressionType 3 secretion systemGene expressionAE lesion formationPromote colonization resistanceE. faecalisAdenine biosynthesisEHEC virulenceEffector translocationBacterial geneticsColonization resistanceEnteric pathogensT3SSLesion formationEHECSupplementation experimentsVirulencePathway activationAdenineEnhanced pathogenesisHost responseCo-InfectionExpressionCo-CultureTranscriptomeThe Xenorhabdus nematophila LrhA transcriptional regulator modulates production of γ-keto-N-acyl amides with inhibitory activity against mutualistic host nematode egg hatching
Lam Y, Hamchand R, Mucci N, Kauffman S, Dudkina N, Reagle E, Casanova-Torres Á, DeCuyper J, Chen H, Song D, Thomas M, Palm N, Goodrich-Blair H, Crawford J. The Xenorhabdus nematophila LrhA transcriptional regulator modulates production of γ-keto-N-acyl amides with inhibitory activity against mutualistic host nematode egg hatching. Applied And Environmental Microbiology 2024, 90: e00528-24. PMID: 38916293, PMCID: PMC11267870, DOI: 10.1128/aem.00528-24.Peer-Reviewed Original ResearchCitationsConceptsRegulatory hierarchyG protein-coupled receptorsSmall molecule signalsHost-bacteria interactionsSymbiotic relationshipNatural productsHuman G protein-coupled receptorsAmino acid metabolismRegulating amino acid metabolismNull mutantsDiverse natural productsSecondary metabolismNematode progeny productionPathogen interactionsGlobal regulatorNematode egg hatchingWild typeInsect hostsSecondary metabolitesHatching rateLrhAAcylated appendagesMolecular networksMolecule signalsAmide signalsMechanism of Action of KL-50, a Candidate Imidazotetrazine for the Treatment of Drug-Resistant Brain Cancers
Huseman E, Lo A, Fedorova O, Elia J, Gueble S, Lin K, Sundaram R, Oh J, Liu J, Menges F, Rees M, Ronan M, Roth J, Batista V, Crawford J, Pyle A, Bindra R, Herzon S. Mechanism of Action of KL-50, a Candidate Imidazotetrazine for the Treatment of Drug-Resistant Brain Cancers. Journal Of The American Chemical Society 2024, 146: 18241-18252. PMID: 38815248, PMCID: PMC11409917, DOI: 10.1021/jacs.3c06483.Peer-Reviewed Original ResearchCitationsAltmetricConceptsDNA repair capacityDifferential DNA repair capacityDNA interstrand cross-linksRepair capacityInterstrand Cross-LinksDisplacement of fluorideDNA repairCross-linkingAberrant DNA repairLesionsHealthy tissueBrain cancerRing openingHealthy cellsMGMTSelective chemotherapyGenotoxic agentsTumorChemical DNA modificationsCancerMultistep processRepairProof-of-concept studies with a computationally designed Mpro inhibitor as a synergistic combination regimen alternative to Paxlovid
Papini C, Ullah I, Ranjan A, Zhang S, Wu Q, Spasov K, Zhang C, Mothes W, Crawford J, Lindenbach B, Uchil P, Kumar P, Jorgensen W, Anderson K. Proof-of-concept studies with a computationally designed Mpro inhibitor as a synergistic combination regimen alternative to Paxlovid. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2320713121. PMID: 38621119, PMCID: PMC11046628, DOI: 10.1073/pnas.2320713121.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsDirect-acting antiviralsSARS-CoV-2Lack of off-target effectsIn vitro pharmacological profileTreatment of patientsDevelopment of severe symptomsPharmacological propertiesDrug-drug interactionsSARS-CoV-2 infectionProof-of-concept studySARS-CoV-2 Mpro .Combination regimenImmunocompromised patientsLead compoundsSARS-CoV-2 main proteaseOral doseActive drugTreat infectionsPharmacological profileSARS-CoV-2 MPotential preclinical candidateOff-target effectsPatientsComplete recoveryCapsule formulation
News
Copy Link
News
- November 14, 2025Source: Yale News
Soaking up the anti-cancer properties of a South Korean sea sponge
- October 27, 2025
YCC Publications 2025
- July 11, 2024
Protein Detects and Responds to Changes in Blood Flow
Get In Touch
Copy Link
Contacts
Mailing Address
Institute of Biomolecular Design and Discovery
Institute of Biomolecular Design & Discovery, PO Box 27392
West Haven, CT 06516-7392
United States